	m 💄	Kanał 2		07-08-19 10:48
	Temp. wewna	ątrz		
		211		
		Z4.4		
				°C
1		26.0		
	A.	26.6	\sim	
	Y	20.2		
	RESET 28-12-18 1	5:24 22.0		
		-400	-200	[s]

DL2 Rejestrator elektroniczny

INSTRUKCJA OBSŁUGI I MONTAŻU

Wersja: 2.0 250219 PL Wersja urządzenia: 2.0

Przed przystąpieniem do instalacji urządzenia należy dokładnie przeczytać całość instrukcji, w szczególności punkty poświęcone środowisku, zdrowiu i bezpieczeństwu.

Urządzenie zostało wyprodukowane zgodnie z wymogami dyrektyw Unii Europejskiej.

Instrukcja powinna być przez cały czas przechowywana w bezpiecznym miejscu w pobliżu miejsca instalacji urządzenia.

Informacja producenta

Producent zastrzega sobie prawo do dokonywania zmian niektórych funkcji, w związku z ciągłym udoskonalaniem konstrukcji przyrządu.

MODBUS® jest zastrzeżonym znakiem Modbus Organization, Inc., North Grafton, MA 01536 USA

SPIS TREŚCI

1 II	NFORMACJE O BEZPIECZEŃSTWIE	7
2 Z	AWARTOŚĆ DOSTAWY, AKCESORIA, PRZECHOWYWANIE	10
2.1	Wyposażenie podstawowe przyrządu	10
2.2	Magazynowanie	10
2.3	Wyposażenie dodatkowe (opcjonalne)	10
3 P	ODSTAWOWE INFORMACJE DOTYCZĄCE PRZYRZĄDU	11
3.1	Zastosowanie przyrządu	11
3.2	Podstawowe funkcje	11
3.3	Oprogramowanie uzupełniające (opcjonalnie)	13
3.4	Wersje urządzenia DL2	13
3.5	Konfiguracja urządzenia	14
3.6	Separacja galwaniczna w przyrządzie	15
4 N	10DUŁY I/0	16
4.1	Zestaw Bazowy DL2	
4.2	IN6I(24V) – sześciokanałowy moduł wejść typu 0-20mA lub 4-20mA	16
4.3	IN6I – sześciokanałowy moduł wejść typu 0-20mA lub 4-20mA	16
4.4	IN6T – sześciokanałowy moduł wejść temperaturowych	16
4.5	IN6V – sześciokanałowy moduł wejść typu napięciowego	17
4.6	IN6 – sześciokanałowy uniwersalny moduł wejść analogowych	17
4.7	IN4SG – czterokanałowy moduł czujników tensometrycznych	17
4.8	IN3D – trzykanałowy moduł wejść binarnych	17
4.9	IN6D – sześciokanałowy moduł wejść binarnych	18
4.10) 2RS485(24V) – moduł dwóch portów RS485 (Modbus RTU Master)	18
4.11	l 2RS485 – moduł dwóch portów RS485 (Modbus RTU Master)	18
4.12	2 1HRT – moduł jednego portu HART (4-20 mA)	18
4.13	3 OUT6RL – sześciokanałowy moduł wyjść przekaźnikowych	19
4.14	1 OUT3 – trzykanałowy moduł wyjść analogowych	19
4.15	5 PSBATT – moduł do zasilania akumulatorowego	19
5 N	IONTAŻ MECHANICZNY	20
6 N	IONTAŻ ELEKTRYCZNY	22
6.1	Podłączenie zasilania (moduł M)	22
6.2	Moduły DL2 – schematy podłączeń (slot A oraz B)	23
6.	2.1 IN6I(24V) – sześciokanałowy moduł wejść typu 0-20mA lub 4-20mA	23
6.	2.2 IN6I – sześciokanałowy moduł wejść typu 0-20mA lub 4-20mA	24
6.	2.3 IN6T – sześciokanałowy moduł wejść temperaturowych	25

	6.2.4	IN6V – sześciokanałowy moduł wejść typu napięciowego	26
	6.2.5	IN6 – sześciokanałowy uniwersalny moduł wejść analogowych	27
	6.2.6	IN4SG – czterokanałowy moduł czujników tensometrycznych	28
	6.2.7	IN3D – trzykanałowy moduł wejść binarnych	.29
	6.2.8	IN6D – sześciokanałowy moduł wejść binarnych	.30
	6.2.9	2RS485(24V) – moduł dwóch portów RS485 (Modbus RTU Master)	.31
	6.2.10	2RS485 – moduł dwóch portów RS485 (Modbus RTU Master)	.32
	6.2.11	1HRT – moduł jednego portu HART (4-20 mA)	.33
	6.2.12	OUT6RL – sześciokanałowy moduł wyjść przekaźnikowych	.34
	6.2.13	OUT3 – trzykanałowy moduł wyjść analogowych	.34
	6.2.14	PSBATT – moduł do zasilania akumulatorowego	35
6.	3 Sch	nematy połączeń – moduł M	.37
	6.3.1	Podłączenie wyjścia analogowego	37
	6.3.2	Podłączenie wyjść przekaźnikowych	37
	6.3.3	Podłączenie linii transmisji danych RS485	.38
	6.3.4	Port Ethernet	.38
7	PANE	L PRZEDNI I PODSTAWOWE PRZYCISKI FUNKCYJNE	39
7.	1 Par	nel przedni urządzenia	39
	7.1.1	Pasek tytułowy	40
	7.1.2	Pasek menu	40
8	PIERV	NSZE URUCHOMIENIE I PODSTAWOWE CZYNNOŚCI	41
8.	1 Kor	ntrola dostępu, logowanie i zmiana hasła użytkownika	41
	8.1.1	Kontrola dostępu	41
	8.1.2	Logowanie	41
	8.1.3	Zmiana hasła	42
8.	2 Zm	iana języka	42
8.	3 Sug	gerowana kolejność konfiguracji ustawień	43
8.	4 Zap	ois i odczyt plików za pomocą portu USB	.44
8.	5 Ust	awienia fabryczne	45
9	DANE		47
10	PODN	NIOT WPROWADZAJĄCY NA RYNEK UE	57
11	OKNA	UŻYTKOWNIKA	58
11	I.1 Info	ormacje o urządzeniu	58
11	I.2 Tab	bele Wyników	59
11	I.3 Tre	ndy	59
11	I.4 Okr	no pojedynczego wyniku	.60

m

11.5 Archiwum	61
11.6 Menu Główne	62
11.7 Alarmy	63
12 PROGRAMOWANIE USTAWIEŃ	64
12.1 Ustawienia ogólne	64
12.1.1 Ogólne	64
12.1.2 Wyświetlacz	65
12.1.3 Data i czas	65
12.1.4 Serwis	66
12.2 Ustawienia wejść i wyjść (I/O)	66
12.2.1 Moduł M (MAIN)	67
12.2.2 Opcje programowania dla poszczególnych modułów	67
12.3 Ustawienia komunikacji	73
12.3.1 Ethernet	73
12.3.2 E-mail	74
12.3.3 Modbus TCP (Client)	75
12.3.4 RS-485 COM	77
12.4 Ustawienia Kanałów	77
12.4.1 Wejścia	78
12.4.2 Ogólne	79
12.4.3 Alarm	80
12.4.4 Liczniki	81
12.5 Ustawienia Ekranów	82
12.5.1 Tabele	82
12.5.2 Trendy	83
12.6 Ustawienia Archiwum	83
13 ARCHIWUM	85
13.1 Rozpoczęcie, wznowienie i zatrzymanie archiwizacji	85
13.2 Ustawienia archiwum	85
13.3 Typy plików archiwum	85
13.4 Sposób tworzenia plików archiwum	85
13.5 Częstotliwość zapisu rekordów	85
13.6 Organizacja plików archiwum	86
13.6.1 Archiwum danych	86
13.6.2 Archiwum liczników	87
13.6.1 Archiwum zdarzeń	87

13.7 Kopiowanie plików archiwum z urządzenia	88
13.7.1 Kopiowanie plików archiwum z wykorzystaniem pamięci USB	88
13.7.2 Kopiowanie plików archiwum z wykorzystaniem serwera WWW	88
13.8 System automatycznego czyszczenia dysku	88
14 FUNKCJE DODATKOWE	90
14.1 Dodatkowe funkcje kanałów	90
14.1.1 Kanały obliczeniowe	90
14.1.2 Charakterystyka użytkownika	91
14.1.3 Kopiowanie ustawień kanałów	92
14.2 Print screen	92
14.3 Serwer WWW	93
14.4 Programy dodatkowe	95
14.4.1 DL-Config	95
14.4.2 M-Raport	96
15 SYMBOLE AWARII	97
15.1 Symbole awarii dla modułu 1HRT	97
16 PROTOKÓŁ TRANSMISJI MODBUS RTU / MODBUS TCP	98
16.1 Informacje podstawowe	98
16.1.1 Typy danych	98
16.2 Adresy rejestrów	98
16.2.1 Tabela adresów wartości procesowych	98
16.2.2 Tabela adresów licznika pierwszego	99
16.2.3 Tabela adresów licznika drugiego	99
16.2.4 Adresy stanów alarmów i potwierdzenia alarmów	99

1 INFORMACJE O BEZPIECZEŃSTWIE

Bezpieczne używanie produktu może być zagwarantowane tylko wtedy, gdy jest on poprawnie zainstalowany, uruchomiony, używany i utrzymywany przez wykwalifikowany personel (więcej informacji w kolejnych podrozdziałach), zgodnie z instrukcją obsługi. W celu uniknięcia zagrożenia konieczne jest również spełnienie ogólnych zaleceń dotyczących narzędzi i urządzeń zabezpieczających.

Używane oznaczenia

Sprzęt chroniony przez podwójną izolację lub wzmocnienie izolacji.

Zacisk uziemienia (masy), umożliwia poprawną pracę produktu. Nie używać w celu zapewnienia bezpieczeństwa elektrycznego.

Uwaga, niebezpieczeństwo porażenia prądem.

Uwaga, ryzyko niebezpieczeństwa, patrz dołączona dokumentacja.

Uwaga, wyładowania elektrostatyczne obwodów wrażliwych. Nie dotykać i nie obsługiwać urządzenia bez odpowiednich środków ostrożności przeciwko wyładowaniom elektrostatycznym.

Ważne uwagi i informacje.

Uwaga

Używanie produktu niezgodnie z przeznaczeniem lub niepoprawna instalacja produktu, wszelkiego typu modyfikacje produktu lub naprawy niezgodne z poniższą instrukcją mogą: • spowodować uszkodzenie produktu lub mienia,

- być przyczyną urazów lub śmierci personelu,
- spowodować utratę gwarancji,
- unieważniają oznaczenie C €.

Należy odłączyć napięcie zasilające przed otwarciem obudowy produktu.

Uwaga

Produkt jest zgodny z następującymi dyrektywami i normami zharmonizowanymi: Kompatybilność elektromagnetyczna (2014/30/UE), spełniając standardy:

- Odporność w środowiskach przemysłowych zgodnie z EN 61326-1:2013 (Table 2).
- Emisja przewodzona i promieniowana Klasa A zgodnie z EN 61326-1:2013.

Produkt może być narażony na zakłócenia powyżej limitów EN 61326, jeżeli:

- Produkt lub jego okablowanie jest umieszczony w pobliżu nadajnika radiowego.
- W napięciu zasilającym pojawiają się nadmierne zakłócenia. Zabezpieczenia linii zasilającej (AC) powinny być zamontowane, jeżeli zakłócenia napięcia zasilającego są prawdopodobne. Zabezpieczenia powinny łączyć filtrowanie, tłumienie, ograniczniki przepięć i impulsów.
- Telefony komórkowe i radia przenośne mogą powodować zakłócenia, jeżeli są używane w odległości do około 1 m od produktu lub jego okablowania. Rzeczywisty konieczny dystans będzie się różnić w zależności od instalacji i mocy nadajnika.

Uwaga

To urządzenie jest urządzeniem Klasy A. W środowisku mieszkalnym może ono powodować zakłócenia radioelektryczne. W takich przypadkach można zażądać od jego użytkowników zastosowania odpowiednich środków zaradczych.

Przeznaczenie

- Należy sprawdzić czy produkt jest odpowiedni do zastosowania w danej aplikacji.
- Należy ustalić prawidłowe położenie instalacji.
- Przed przystąpieniem do montażu produktów Metronic AKP należy wziąć pod uwagę wszelkie ograniczenia środowiskowe urządzeń, wyszczególnione w instrukcji.

Dostęp

Należy zapewnić bezpieczny dostęp i w razie potrzeby bezpieczną platformę roboczą (odpowiednio strzeżoną) przed przystąpieniem do pracy z urządzeniem.

Oświetlenie

Należy zapewnić odpowiednie oświetlenie, zwłaszcza tam, gdzie wymagane są szczegółowe lub skomplikowane prace.

Niebezpieczne otoczenie wokół produktu

Należy rozważyć: obszary zagrożone wybuchem, brak tlenu (np. zbiorniki, wyrobiska), niebezpieczne gazy, ekstremalne temperatury, gorące powierzchnie, zagrożenie pożarowe (np. podczas spawania), nadmierny hałas, ruchy maszyn.

System

Należy rozważyć wpływ na cały proponowany układ pracy: czy wszelkie proponowane działania nie wywołają niebezpieczeństwa dla żadnej innej części systemu lub personelu.

Niebezpieczeństwo może obejmować izolację otworów lub urządzeń zabezpieczających lub uczynienie nieskutecznymi kontroli i alarmów.

Narzędzia i materiały eksploatacyjne

Przed rozpoczęciem pracy należy upewnić się, że są dostępne odpowiednie narzędzia i/lub materiały eksploatacyjne.

Odzież ochronna

Należy rozważyć czy osoby przebywające w pobliżu nie potrzebują odzieży ochronnej do ochrony przed niebezpieczeństwami, np. chemikaliami, niską/wysoką temperaturą, promieniowaniem, hałasem, spadającymi przedmiotami i zagrożeniami dla oczu i twarzy.

Zezwolenia na pracę

Wszystkie prace muszą być przeprowadzane lub nadzorowane przez odpowiednio kompetentną osobę. Pracownicy montażu i obsługi powinni być przeszkoleni w prawidłowym wykorzystaniu produktu zgodnie z Instrukcją Instalacji i Konserwacji. Jeżeli wdrożony jest system formalnego "zezwolenia na pracę" musi być on przestrzegany. Jeżeli nie ma takiego systemu, zalecane jest, aby osoba odpowiedzialna wiedziała, jakie prace są przeprowadzane i w razie konieczności zorganizowała asystenta, którego podstawowym obowiązkiem jest dbanie o bezpieczeństwo.

Jeżeli to konieczne należy umieścić napis "Uwaga niebezpieczeństwo".

Czyszczenie i konserwacja

Produkty Mertonic AKP nie wymagają żadnych prac konserwacyjnych poza okresową wymianą baterii. Przewidywany czas pracy baterii to 10 lat, po upływie których należy zwrócić się do producenta w celu dokonania wymiany.

Od czasu do czasu należy wyczyścić obudowę urządzenia suchą, miętką tkaniną. Do czyszczenia urządzenia nie wolno stosować rozpuszczalników ani materiałów ściernych. Mogą one bowiem spowodować przebarwienia lub zarysować powierzchnię urządzania.

Sprzedaż

DL2 zawiera baterię. Przy sprzedaży urządzenia lub podzespołu należy podjąć odpowiednie środki ostrożności zgodnie z lokalnymi/krajowymi przepisami.

O ile nie zaznaczono inaczej w instrukcji instalacji i konserwacji, z wyjątkiem baterii produkt nadaje się do recyklingu i nie przewiduje się zagrożenia ekologicznego związanego z jego sprzedażą pod warunkiem zachowania należytej staranności.

Zwracanie produktu

Klienci i dystrybutorzy muszą pamiętać, że zgodnie z europejskim prawem dotyczącym zdrowia, bezpieczeństwa i ochrony środowiska (Environment, Health and Safety), zwracając produkty do Metronic AKP należy dostarczyć informacje na temat wszelkich zagrożeń i środków ostrożności, które należy podjąć ze względu na pozostałości zanieczyszczeń lub uszkodzenia mechaniczne, które mogą stanowić niebezpieczeństwo dla zdrowia, bezpieczeństwa lub środowiska. Informacje te muszą być dostarczone w formie pisemnej, włączając karty charakterystyki jakichkolwiek substancji uznawanych za niebezpieczne lub potencjalnie niebezpieczne.

2 ZAWARTOŚĆ DOSTAWY, AKCESORIA, PRZECHOWYWANIE

Przed wysyłką każde urządzenie Metronic AKP jest sprawdzane i kalibrowane w celu zapewnienia poprawności jego działania.

Uwaga

W momencie odbioru, zawartość opakowania powinna być sprawdzona pod kątem ewentualnego uszkodzenia przesyłki.

Należy również dokładnie porównać stan faktyczny wyposażenia z listą wyszczególnionych w kolejnym podrozdziale elementów. W wypadku uszkodzenia lub stwierdzenia braku elementów należy w obecności przewoźnika sporządzić odpowiedni protokół, który powinien być opatrzony datą odbioru oraz podpisem doręczyciela przesyłki.

2.1 Wyposażenie podstawowe przyrządu

Urządzenie DL2 wykonane zgodnie z indywidualnym zamówieniem klienta	1 szt.
 Zestaw łączówek typu wtyczka 	1 kpl.
 Uchwyty do mocowania urządzenia 	2 szt.
 Uszczelka (zakładana między obudową a panelem) 	1 szt.
Karta gwarancyjna	1 szt.
Świadectwo kalibracji	1 szt.

2.2 Magazynowanie

Jeśli urządzenie ma być przechowywane przez pewien czas przed rozpoczęciem montażu, należy przestrzegać warunków prawidłowego magazynowania. Urządzenie powinno być przechowywanie w temperaturze z zakresu od -30 °C do 70 °C i przy wilgotności względnej utrzymującej się w granicach od 5% do 95% (bez kondensacji).

Przed zainstalowaniem i podłączeniem zasilania należy upewnić się, że wewnątrz urządzenia nie doszło do kondensacji.

2.3 Wyposażenie dodatkowe (opcjonalne)

- CONV485E
- CONV485USB-I
- CONV485USB
- Zasilacz
- Pendrive

3 PODSTAWOWE INFORMACJE DOTYCZĄCE PRZYRZĄDU

3.1 Zastosowanie przyrządu

DL2 wielokanałowym, mikroprocesorowym przyrządem pomiarowym jest z elektroniczną rejestracją wyników. Przyrząd przeznaczony jest do pomiaru sygnałów procesowych w instalacjach przemysłowych i może służyć do pomiaru wielkości fizycznych przetworzonych na standardowy sygnał prądowy 0-20mA lub 4-20mA, takich jak: temperatura, wilgotność, ciśnienie, przepływ, poziom, skład chemiczny, itp. Miernik nadaje się do pomiaru przebiegów wolnozmiennych, gdzie zmiany nie następują szybciej niż kilka sekund. Rejestracja wyników oraz elastyczna konfiguracja I/O predysponuje ten przyrząd do monitorowania parametrów w pomieszczeniach magazynowych i nadzorowania ciągów produkcyjnych. Urządzenie posiada kanały obliczeniowe, umożliwiające wykonanie wybranych operacji matematycznych na podstawie wartości zmierzonych w kanałach pomiarowych, według wprowadzonych przez użytkownika formuł. Ilość zapamiętywanych danych oraz konfigurowalne funkcje wyświetlania i przeglądania przebiegów pozwalają na użycie miernika jako bezpapierowego rejestratora elektronicznego. Urządzenie może być podłączone do komputera PC lub systemu sterowania za pośrednictwem portów komunikacyjnych Ethernet lub RS-485.

Każdy przyrząd zawiera moduł podstawowy (bazowy) i może być rozszerzony o dodatkowe dwa moduły I/O – wejść/wyjść (szczegóły w rozdziale MODUŁY I/O).

Przyrząd przeznaczony jest do zasilania napięciem 24 VDC. Szczegółowe informacje dotyczące zasilania opisane zostały w rozdziale <u>podłączenie zasilania</u>.

3.2 Podstawowe funkcje

• 30 programowalnych kanałów

Produkt umożliwia skonfigurowanie do 30 swobodnie programowalnych kanałów. Dla każdego z nich wyświetlana jest wartość bieżąca oraz wartość maksymalna i minimalna kanału.

Analogowy pomiar wielkości procesowych

Urządzenie może być wyposażone w do 12 wejść/wyjść pomiarowych (w zależności od konfiguracji). Odczytane wartości mogą być przypisane do kanałów oraz archiwizowane.

Odczyt przetworników w protokole HART

W przypadku zainstalowania dwóch modułów 1HRT urządzenie umożliwia zdalny odczyt do 30 wartości w protokole HART. W ramach jednego modułu może być odczytane do 25 wartości. Możliwy jest odczyt zmiennych PV, TV, SV, FV oraz DVC. Odczytane wartości mogą być przypisane do kanałów oraz archiwizowane.

• Odczyt przetworników z wyjściem cyfrowym Modbus RTU

W przypadku zainstalowania dwóch modułów 2RS485(24V) lub 2RS485, urządzenie umożliwia zdalny odczyt do 30 wartości (protokół Modbus RTU). W ramach jednego modułu może być odczytane do 25 wartości. Odczytane wartości mogą być przypisane do kanałów oraz archiwizowane.

• Odczyt przetworników z wyjściem cyfrowym Modbus TCP (Client)

Urządzenie umożliwia zdalny odczyt do 30 wartości z 20 urządzeń (protokół Modbus TCP). Odczytane wartości mogą być przypisane do kanałów oraz archiwizowane.

• Pomiar przepływów

Do każdego wejścia pomiarowego (również dwustanowego) i każdej wartości obliczanej można przypisać dwa niezależne liczniki. Liczniki dla wejść impulsowych realizują precyzyjne sumowanie impulsów. Wiadomość o stanach liczników może być przesłana automatycznie w formie wiadomości e-mail (max. 5 odbiorców) o wskazanej godzinie codziennie, w wybranym dniu tygodnia lub w wybranym dniu miesiąca.

• Sygnalizacja alarmowa i sterowanie

Dla każdego kanału mogą być ustawione dwa progi alarmowe. Wyjścia binarne mogą być przypisane do progów alarmowych. Dla alarmów dostępne są dwa tryby: zatwierdzany (tryb alarmowy) i niezatwierdzany (tryb sterujący). Standardowo dostępne są 4 przekaźniki alarmowe, kolejne 12 przekaźników można zainstalować jako moduły I/O. Wiadomość o wystąpieniu i ustąpieniu alarmu może być przesłana automatycznie w formie wiadomości e-mail (max. 5 odbiorców).

• Retransmisja wartości kanału

Standardowo jest dostępne jedno wyjście 4-20 mA, kolejne 6 wyjść może być zainstalowane jako moduły I/O.

• Kanały obliczeniowe

W ramach kanałów obliczeniowych dostępne są wybrane operacje matematyczne: dodawanie, odejmowanie, dzielenie, mnożenie, podnoszenie do 2, 3 lub dowolnej potęgi oraz pierwiastkowanie. Wprowadzona formuła w kanale obliczeniowym może zawierać do 200 znaków.

Wartość zadana

Można utworzyć kanał, którego wartość jest wprowadzana ręcznie z ekranu DL2. Wartosć zadana jest ograniczona wartościami min i max wprowadzanymi w ustawieniach kanału.

Rejestracja wyników

Wyniki pomiarów i obliczeń oraz stany liczników mogą być zapisywane do wewnętrznej pamięci przyrządu o pojemności 2 GB. Dane zapisywane są w postaci tekstowej wraz z zabezpieczeniem szyfrowaną sumą kontrolną. Oprócz wartości mierzonych rejestrowane są zdarzenia (zaniki zasilania, przeprogramowanie ustawień, przekroczenia progów alarmowych, itp.) oraz czynności autoryzowane.

Wyświetlanie wyników

Zmierzone oraz obliczone wyniki wyświetlane są na 4" dotykowym wyświetlaczu graficznym LCD przyrządu. W zależności od konfiguracji, wartości kanałów przedstawione są w postaci graficznego wykresu lub w postaci cyfrowej (max. 11 znaków wyświetlanych dla wartości procesowych i max. 14 znaków wyświetlanych dla liczników; po przekroczeniu zakresu pomiarowego dla wartości kanału lub licznika symbol ----- zostanie wyświetlony na ekranie oraz zostanie zapisany w archiwum urządzenia). Wartości kanałów mogą być też wyświetlane zbiorczo w formie wykresów trendów lub tabel (max. 11 znaków dla wartości procesowych i liczników). Ekrany pomiarowe mogą być przeglądane sekwencyjnie lub ustawione na wybranym kanale.

 Komunikacja z systemem nadrzędnym (udostępnianie wyników pomiarowych) Przyrząd może być włączony do systemu nadrzędnego przez: wbudowany port szeregowy RS-485; protokół Modbus RTU,

- port Ethernet; protokół Modbus TCP.

Rys. 3.1 Schemat blokowy DL2

3.3 Oprogramowanie uzupełniające (opcjonalnie)

Dodatkowe oprogramowanie do urządzenia może być pobrane ze strony Producenta: <u>www.metronic.pl</u>.

• Program do konfiguracji urządzenia

Dedykowany do urządzenia DL2, program *DL-Config.exe* umożliwia konfigurację przyrządu za pomocą komputera. Program cechuje się intuicyjną obsługą oraz interfejsem bardzo zbliżonym do interfejsu urządzenia. Program pracuje na komputerach z systemem operacyjnym MS Win. Dodatkowe informacje w rozdziale <u>DL-Config</u>.

• Program do analizy i wizualizacji danych archiwalnych

Program *M-Raport.exe,* dedykowany do plików archiwalnych, służy do analizy i wizualizacji wyników pomiarowych za pomocą komputera. Wersja rozszerzona programu umożliwia pobieranie archiwum online. Dodatkowe informacje w rozdziale <u>M-Raport</u>.

3.4 Wersje urządzenia DL2

DL2 jest rejestratorem danych stworzonym z myślą o jak najlepszym przystosowaniu urządzenia do indywidualnych potrzeb klienta. Każde urządzenie składa się z modułu bazowego, do którego w zależności od potrzeb metrologicznych dołączać można kolejne, odpowiednio dobrane, moduły wejść i wyjść. W zależności od potrzeb, w urządzeniu może

być zainstalowane do dwóch modułów dodatkowych. Każdy z nich wyposażony jest opcjonalnie w 3 lub 6 kanałów pomiarowych.

Urządzenie dostępne jest w wersji do montażu panelowego **DL2** i montażu naściennego **DL2W KIT**.

	Płyta czołowa	Widok boczny
DL2 Wersja do zabudowy panelowej	The survey of the second secon	

3.5 Konfiguracja urządzenia

W urządzeniu mogą być zamontowane maksymalnie dwa moduły wejść / wyjść, zgodnie z poniższym oznaczeniem:

gdzie x oznacza kod modułu

Kod modułu	Typ modułu
11	IN6I(24V)
12	IN6I
23	IN6T
41	IN6V
53	IN6
55	IN4SG
61	IN6D
62	IN3D
71	2RS485(24V)
72	2RS485
75	1HRT
81	OUT6RL
91	OUT3
95	PSBATT

Przykład:

 urządzenie z 6 wejściami temperaturowymi oraz z modułem 6 wyjść przekaźnikowych, posiada kod:

DL2-23-81-SX

• urządzenie z 6 wejściami napięciowymi posiada kod:

DL2-41-00-SX

Znak 00 w powyższym kodzie oznacza, że w urządzeniu zainstalowany jest jeden moduł (na slocie A).

Dane na temat konfiguracji hardware można również sprawdzić z poziomu urządzenia w oknie <u>Informacje o urządzeniu</u>.

Konfiguracja urządzenia dokonywana jest przez producenta zgodnie z zamówieniem klienta. Wykaz poszczególnych modułów wraz z ich szczegółowym opisem znajduje się w rozdziale <u>MODUŁY I/O</u>.

3.6 Separacja galwaniczna w przyrządzie

Rys. 3.2 Separacja galwaniczna w DL2 (separacja funkcjonalna 500VAC @ 1min).

4 MODUŁY I/O

Poszczególne schematy podłączeń elektrycznych znajdują się w rozdziale <u>MONTAŻ</u> <u>ELEKTRYCZNY.</u>

4.1 Zestaw Bazowy DL2

Każde urządzenie DL2 składa się z:

- obudowy,
- płyty czołowej z wyświetlaczem LCD, diodą LED oraz portem USB typu A,
- Modułu M zawierającego:
 - 4 półprzewodnikowe wyjścia przekaźnikowe,
 - 1 wyjście analogowe 4-20mA,
 - gniazdo portu Ethernet,
 - interfejs komunikacyjny RS-485,
 - układ zasilania z 24 VDC.

Do zestawu bazowego mogą być dołączone dwa moduły wejść/wyjść opisane poniżej. Szczegółowe dane techniczne dotyczące poszczególnych modułów opisano w rozdziale <u>DANE TECHNICZNE</u>.

4.2 IN6I(24V) – sześciokanałowy moduł wejść typu 0-20mA lub 4-20mA

- standardowe wejścia pętli prądowej 0-20 mA lub 4-20 mA dla przetworników pasywnych lub aktywnych (wewnętrzne źródło napięcia 24 VDC dla zasilania pętli),
- liniowy pomiar prądu w zakresie lub podzakresie -20 .. +20 mA,
- separacja galwaniczna od pozostałych obwodów urządzenia, brak separacji między kanałami wejściowymi,
- każde wejście posiada osobną łączówkę czterozaciskową typu wtyczka,
- dwukolorowa dioda LED informująca o statusie pracy modułu.

4.3 IN6I – sześciokanałowy moduł wejść typu 0-20mA lub 4-20mA

- standardowe wejścia pętli prądowej 0-20 mA lub 4-20 mA dla przetworników aktywnych (brak wewnętrznego źródła napięcia 24 VDC dla zasilania pętli),
- liniowy pomiar prądu w zakresie lub podzakresie -20 .. +20 mA,
- separacja galwaniczna od pozostałych obwodów urządzenia, brak separacji między kanałami wejściowymi,
- każde wejście posiada osobną łączówkę czterozaciskową typu wtyczka,
- dwukolorowa dioda LED informująca o statusie pracy modułu.

4.4 IN6T – sześciokanałowy moduł wejść temperaturowych

- wejścia konfigurowalne do pomiaru temperatury,
- pomiary temperatury za pomocą czujników RTD: Pt, Ni, Cu, KTY,
- pomiary temperatury za pomocą termopar : J, K, N, R, S, T, E, B, L, U,
- kompensacja spoiny odniesienia wartością stałą lub pomiar innym kanałem,
- liniowy pomiar napięcia w zakresie lub podzakresie -140 .. +140 mV
- liniowy pomiar rezystancji w zakresie lub podzakresie 0.. 4500 Ω,
- separacja galwaniczna od pozostałych obwodów urządzenia, brak separacji między kanałami wejściowymi,
- każde wejście posiada łączówkę czterozaciskową typu wtyczka,
- dwukolorowa dioda LED informująca o statusie pracy modułu.

4.5 IN6V – sześciokanałowy moduł wejść typu napięciowego

- standardowe wejścia napięciowe: 0-10V, 2-10V, 0-5V i 1-5V,
- liniowy pomiar napięcia w zakresie lub podzakresie -10 .. +10 V,
- separacja galwaniczna od pozostałych obwodów urządzenia, brak separacji między kanałami wejściowymi,
- każde wejście posiada osobną łączówkę czterozaciskową typu wtyczka,
- dwukolorowa dioda LED informująca o statusie pracy modułu.

4.6 IN6 – sześciokanałowy uniwersalny moduł wejść analogowych

- Wejścia IN1, IN2, IN3 dedykowane do pomiaru temperatury,
- Wejścia IN4, IN5, IN6 dedykowane do pomiaru napięcia i prądu,
- pomiary temperatury za pomocą czujników Pt, Ni, Cu, KTY,
- pomiary temperatury za pomocą termopar,
- kompensacja spoiny odniesienia wartością stałą lub pomiar innym kanałem,
- liniowy pomiar prądu w zakresie lub podzakresie 0..20.mA lub 4 .. 20 mA,
- liniowy pomiar napięcia w zakresie lub podzakresie -140 .. +140 mV, -10 .. +10 V,
- liniowy pomiar rezystancji w zakresie lub podzakresie 0 .. 4500 Ω,
- separacja galwaniczna od pozostałych obwodów urządzenia, brak separacji między kanałami wejściowymi,
- każde wejście posiada łączówkę czterozaciskową typu wtyczka,
- dwukolorowa dioda LED informująca o statusie pracy modułu.

4.7 IN4SG – czterokanałowy moduł czujników tensometrycznych

- pomiar sygnału z tensometrów i mostków tensometrycznych,
- zasilanie czujników tensometrycznych 5 VDC,
- wejście pomiarowe -30 .. +30 mV,
- możliwość podłączenia od 1 do 4 czujników tensometrycznych,
- możliwość podłączenie od 1 do 4 sygnałów zerujących (tara),
- impuls zerujący 24 VDC w zakresie (10-36 VDC),
- zerowanie pojedynczego kanału lub wszystkich kanałów jednocześnie,
- możliwość podłączenia tensometrów w układzie pół-mostka i ćwierć-mostka (opcjonalnie, wymagany kontakt z producentem),
- każde wejście posiada łączówkę czterozaciskową typu wtyczka,
- dwukolorowa dioda LED informująca o statusie pracy modułu.

4.8 IN3D – trzykanałowy moduł wejść binarnych

- przeznaczony do pomiaru częstotliwości, zliczania impulsów lub pracy w trybie dwustanowym (możliwość śledzenia sygnału binarnego zwarcie / rozwarcie),
- pomiar częstotliwości w zakresie 0,02 .. 12 500 Hz (zliczanie impulsów 0 .. 100 Hz),
- 0 .. 4 VDC / 5,5 .. 34 VDC (3,6 mA) zgodnie z charakterystyką EN61131-2,
- współpraca z pasywnym nadajnikiem impulsów (styk, tranzystor w konfiguracji OC), źródłem impulsów napięciowych bądź prądowych,
- separacja galwaniczna od pozostałych obwodów urządzenia, brak separacji między kanałami wejściowymi,
- każde wejście posiada łączówkę czterozaciskową typu wtyczka,
- dwukolorowa dioda LED informująca o statusie pracy modułu.

4.9 IN6D – sześciokanałowy moduł wejść binarnych

- przeznaczony do pomiaru częstotliwości, zliczania impulsów lub pracy w trybie dwustanowym (możliwość śledzenia sygnału binarnego zwarcie / rozwarcie),
- pomiar częstotliwości w zakresie 0,1 .. 1000 Hz (zliczanie impulsów 0 .. 100 Hz),
- 0 .. 4 VDC / 5,5 .. 34 VDC (3,6 mA) zgodnie z charakterystyką EN61131-2,
- inny prąd przełączania na poziomie 0.3 mA, 0,9 mA, 3,0mA możliwe do wyboru za pomocą DIP-switcha umieszczonego na płytce PCB modułu,
- współpraca z pasywnym nadajnikiem impulsów (styk, tranzystor w konfiguracji OC), źródłem impulsów napięciowych bądź prądowych,
- separacja galwaniczna od pozostałych obwodów urządzenia, brak separacji między kanałami wejściowymi,
- każde wejście posiada łączówkę trójzaciskową typu wtyczka,
- każde wejście posiada diodę LED wskazującą poziom stanu wejścia,
- dwukolorowa dioda LED informująca o statusie pracy modułu.

4.10 2RS485(24V) - moduł dwóch portów RS485 (Modbus RTU Master)

- przeznaczony do współpracy z przyrządami i czujnikami komunikującymi się po magistrali cyfrowej RS-485 zgodnie z protokołem Modbus RTU,
- możliwość odczytu i rejestracji do 25 wielkości cyfrowych za pomocą jednego modułu; dostępne formaty: 16-bitowa / 32-bitowa liczba całkowita ze znakiem lub bez, 64-bitowa liczba całkowita ze znakiem, 32-bitowa / 64-bitowa liczba zmiennoprzecinkowa,
- 2 niezależne i separowane galwanicznie porty RS485,
- każdy port posiada łączówkę czterozaciskową typu wtyczka,
- dodatkowe źródło napięcia 24 VDC / max 200 mA do zasilania zewnętrznych przetworników z przyrządu,
- dwukolorowa dioda LED informująca o statusie pracy modułu.

4.11 2RS485 – moduł dwóch portów RS485 (Modbus RTU Master)

- przeznaczony do współpracy z przyrządami i czujnikami komunikującymi się po magistrali cyfrowej RS-485 zgodnie z protokołem Modbus RTU,
- możliwość odczytu i rejestracji 25 wielkości cyfrowych za pomocą jednego modułu; dostępne formaty: 16-bitowa / 32-bitowa liczba całkowita ze znakiem lub bez, 64-bitowa liczba całkowita ze znakiem, 32-bitowa lub 64-bitowa liczba zmiennoprzecinkowa,
- 2 niezależne i separowane galwanicznie porty RS485,
- każdy port posiada łączówkę czterozaciskową typu wtyczka,
- dwukolorowa dioda LED informująca o statusie pracy modułu.

4.12 1HRT – moduł jednego portu HART (4-20 mA)

- port HART, możliwość podłączenia przetworników pasywnych lub aktywnych (pętla prądowa 4-20 mA), wewnętrzne źródło napięcia 24 VDC dla zasilania pętli,
- możliwość pracy w trybie multidrop (max. 15 urządzeń),
- praca jako Primary Master lub jako Secondary Master (kompatybilność z rev 4, rev 5, rev 6, rev 7),
- możliwość odczytu i rejestracji do 25 wartości zmiennych (max. 15 urządzeń) za pomocą jednego modułu,
- pobieranie adresu długiego (rev 5, rev 6, rev 7),
- zmiana adresu krótkiego (rev 4, rev 5, rev 5, rev 7),
- testowy odczyt ramki ID,

- wewnętrzny rezystor 250 Ω (domyślnie wyłączony, możliwość zmiany w menu ustawień),
- separacja galwaniczna od pozostałych obwodów urządzenia, brak separacji między łączówkami,
- sześć łączówek czterozaciskowych typu wtyczka (wewnętrzne połączenie równolegle między łączówkami),
- dwukolorowa dioda LED informująca o statusie pracy modułu.

4.13 OUT6RL – sześciokanałowy moduł wyjść przekaźnikowych

- galwanicznie oddzielone od siebie 24 VAC lub 36 VDC,
- typ wyjść przekaźniki półprzewodnikowe (SSR) AC/DC o obciążalności 0,5 A,
- każde wyjście posiada osobną łączówkę czterozaciskową typu wtyczka,
- dwukolorowa dioda LED informująca o statusie pracy modułu.

4.14 OUT3 – trzykanałowy moduł wyjść analogowych

- wyjścia analogowe uniwersalne, każde może pracować jako aktywne źródło pętli prądowej w zakresach: 0-20 mA, 4-20 mA, 0-24 mA lub jako źródło napięcia w zakresach: 0-5 V, 0-10 V,
- przetworniki D/A o rozdzielczości 12 bitów,
- każdy kanał posiada dwie łączówki czterozaciskowe, jedna przeznaczona jest do podłączenia odbiornika pętli prądowej, druga – odbiornika napięciowego, nie można jednocześnie korzystać ze źródła prądowego i napięciowego dla danego kanału,
- dwukolorowa dioda LED informująca o statusie pracy modułu.

4.15 PSBATT – moduł do zasilania akumulatorowego

- zasilanie przyrządu z akumulatorów NiMH w sytuacji zaniku napięcia (backup) lub okresowa praca przyrządu przy zasilaniu akumulatorowym,
- czas pracy od 1 do 20 godzin (zależny od ilości i typów zainstalowanych modułów I/O),
- dwukolorowa dioda LED informująca o statusie pracy modułu.

Uwaga:

Maksymalna ilość modułów PSBATT w urządzeniu: 1. Od 1 kwietnia 2020 moduł PSBATT jest produkowany wyłącznie w wersji 1.2. Wersja 1.2 modułu nie jest kompatybilna wstecz. Instrukcja zawiera informacje dotyczące podłączenia i konfiguracji modułu w wersji 1.2. Szczegóły techniczne dotyczące modułu w wersji 1.0 i 1.1 dostępne są u Producenta. Wersja 1.0 i 1.1 modułu nie jest odczytywana w konfiguracji Hardware w oknie <u>Informacje o urządzeniu</u> (wyświetlany jest symbol "------" i czerwony kolor paska) oraz w oknie ustawień <u>I/O</u> (wyświetlany jest symbol "------").

Uwaga:

Jeśli w urządzeniu zainstalowano moduł IN6I(24V) lub moduł 2RS485(24V) pracujący jako źródło napięcia, zakres temperaturowy wynosi 0 .. +40 °C. W pozostałych konfiguracjach zakres temperaturowy wynosi 0 .. +50 °C.

5 MONTAŻ MECHANICZNY

Przed przystąpieniem do prac montażowych należy zapoznać się dokładnie z informacjami dotyczącymi bezpieczeństwa opisanymi w rozdziale INFORMACJE O BEZPIECZEŃSTWIE.

DL2 jest przyrządem przystosowanym do zabudowy panelowej. Można go montować w tablicach o grubości ścianki nie mniejszej niż 1 mm. Przed montażem należy wyciąć w tablicy otwór prostokątny o wymiarach 138⁽⁺¹⁾ mm X 68^(+0,7) mm. Głębokość zabudowy przyrządu (z łączówkami) wynosi 127 mm. Celem zapewnienia swobodnego montażu elektrycznego zalecane jest jednak pozostawienie z tyłu przyrządu dodatkowej wolnej przestrzeni około 30 mm.

Podczas montażu miernika w otworze płyty należy umieścić i odpowiednio ułożyć uszczelkę pomiędzy tylną ścianką ramki i płytą. Po osadzeniu miernika należy zamocować na jego bocznych ściankach uchwyty montażowe "na zatrzask", a następnie wkręcić wkręty dociskowe uchwytów. Dzięki zastosowaniu rozłączalnych listew zaciskowych można najpierw dokonać montażu elektrycznego, a następnie zamontować urządzenie.

	DL2
Otwór montażowy w tablicy - szerokość	138 ^(+1,1) mm
Otwór montażowy w tablicy - wysokość	68 ^(+0,7) mm
Głębokość zabudowy (z łączówkami)	127 mm

Rys. 5.1 Wymiary obudowy urządzenia DL2 oraz wymiary wykroju w panelu.

I

Przyrząd powinien być tak zamontowany, aby nie był narażony na bezpośrednie nagrzewanie od innych urządzeń.

Należy dążyć do takiego zamontowania przyrządu, aby praca elementów o dużym poziomie emisji zakłóceń (styczniki, przekaźniki mocy, falowniki) nie zaburzała pracy miernika.

6 MONTAŻ ELEKTRYCZNY

Przed przystąpieniem do prac montażowych należy zapoznać się dokładnie z informacjami dotyczącymi bezpieczeństwa opisanymi w rozdziale INFORMACJE O BEZPIECZEŃSTWIE.

Podłączenie napięcia zasilającego oraz sygnałów pomiarowych i sterujących umożliwiają rozłączne złącza śrubowe umieszczone na płycie tylnej urządzenia. Do listew można podłączać przewody o przekroju do 1,5 mm². W przypadku stosowania grubszych przewodów, zalecane jest stosowanie w szafie pomiarowej łączówki pośredniej pomiędzy okablowaniem obiektowym a przyrządem. Przewody powinny być odizolowane na odcinku 8 mm do 10 mm na końcu. Listwy umożliwiają stosowanie zarówno przewodów typu linka jak i drut.

DL2 jest urządzeniem modułowym, w każdym urządzeniu na stałe jest zamontowany moduł M (zobacz rozdział <u>Zestaw bazowy DL2</u>). W zależności od potrzeb, w urządzeniu może być zainstalowane do dwóch modułów dodatkowych, oznaczonych jako A oraz B (szczegółowe informacje w rozdziale <u>MODUŁY I/O</u>).

Na rysunku poniżej przedstawiono przykładowy wygląd płyty tylnej urządzenia, zbudowanego z zestawu bazowego M i dwóch modułów sześciokanałowych. W zależności od wersji urządzenia, płyta tylna może wyglądać inaczej.

Rys. 6.1 Przykładowy widok płyty tylnej DL2.

6.1 Podłączenie zasilania (moduł M)

Urządzenie wymaga zasilacza 24 VDC o mocy co najmniej 12 W. W przypadku zasilania z 230/110 VAC, zaleca się stosowanie wysokosprawnego przemysłowego zasilacza impulsowego o mocy dostarczonej co najmniej 15 W.

Dla zapewnienia bezpieczeństwa zasilanie doprowadzone do urządzenia musi spełniać warunki wymagane dla źródeł napięcia obniżonego SELV (Safety Extra Low-Voltage), o napięciu zasilania 24 VDC zgodnie ze specyfikacjami normy IEC60950-1.

W celu wyeliminowania zakłóceń zaleca się podłączenie przewodu uziemiającego do łączówki – na zacisku 15 wyprowadzona jest masa przyrządu. To połączenie nie jest wymagane ze względu na wymogi bezpieczeństwa.

W przypadku zainstalowanego modułu PSBATT zabronione jest podłączenie zasilacza do modułu M – szczegóły w rozdziale <u>PSBATT – moduł do zasilania akumulatorowego</u>.

Pobór mocy maksymalny jest zależny od ilości oraz typu modułów wejść i wyjść. Należy również wziąć pod uwagę, że zakres temperaturowy pracy urządzenia jest zależny od jego konfiguracji. Szczegółowe informacje znajdują się w rozdziale <u>DANE TECHNICZNE</u>.

6.2 Moduły DL2 – schematy podłączeń (slot A oraz B)

Szczegółowe informacje na temat poszczególnych modułów zawarte są w rozdziale <u>MODUŁY I/O</u>.

6.2.1 IN6I(24V) – sześciokanałowy moduł wejść typu 0-20mA lub 4-20mA

	N	umer	zacis	ku		Opis						
1	5	9	13	17	21	+24V OUT (22 mA max) Zasilanie przetwornika. Każde wyjście zabezpieczone jest przez resetowalny bezpiecznik polimerowy 50 mA.						
2	6	10	14	18	22	l+ Wejście sygnału pętli prądowej (+)						
3	7	11	15	19	23	I- Wejście sygnału pętli prądowej (-)						
4	8	12	16	20	24	GND A Masa sygnału						

Uwaga

Jeśli do podłączenia przetwornika wykorzystywany jest kabel ekranowany, do podłączenia ekranu można użyć złącza GND A. Zalecane jest jednak podłączenie ekranu do masy funkcjonalnej lub uziemienia szafy metalowej (PE).

6.2.2 IN6I – sześciokanałowy moduł wejść typu 0-20mA lub 4-20mA

	N	umer	zacisk	ĸu		Opis				
1	5	9	13	17	21	Nieużywany				
2	6	10	14	18	22	I+ Wejście sygnału pętli prądowej (+)				
3	7	11	15	19	23	I- Wejście sygnału pętli prądowej (-)				
4	8	12	16	20	24	GND A Masa sygnału				

Uwaga

Jeśli do podłączenia przetwornika wykorzystywany jest kabel ekranowany, do podłączenia ekranu można użyć złącza GND A. Zalecane jest jednak podłączenie ekranu do masy funkcjonalnej lub uziemienia szafy metalowej (PE).

6.2.3 IN6T – sześciokanałowy moduł wejść temperaturowych

IN6T

Pomiar TC		11	۷1			IN	2		1	١N	13			IN	4			IN	15			IN	16	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
						+				▲														

Pomiar RTD

	Nu	Imer	zacis	sku		Opis
1	5	9	13	17	21	I+ Wyjście prądowe dla podłączeń 4-, 3- i 2-przewodowych
2	6	10	14	18	22	U+ Wejście napięciowe dla podłączeń 4- i 2-przewodowych
3	7	11	15	19	23	 U- / I+ Wejście napięciowe dla podłączeń 4- i 2-przewodowych Wejście napięciowe i wyjście prądowe dla podłączenia 3-przewodowego
4	8	12	16	20	24	 I-/2*I- Prąd powrotny dla podłączeń 4- i 2-przewodowych Podwójny prąd powrotny dla podłączenia 3-przewodowego

Pomiar TC

	Nu	umer	zacis	ku			Opis
1	5	9	13	17	21		Nieużywany
2	6	10	14	18	22	mV+	Wejście sygnału napięciowego (+)
3	7	11	15	19	23	mV-	Wejście sygnału napięciowego (-)
4	8	12	16	20	24	GND A	Masa sygnału

Uwaga

Karta IN6T jest fabrycznie kalibrowana dla układu 2 i 3 przewodowego. Kalibracja dla tych układów jest wspólna. Na życzenie użytkownika jest możliwość kalibracji w układzie 4 przewodowym.

Uwaga

Jeśli do podłączenia czujnika używany jest kabel ekranowany, do podłączenia ekranu można użyć złącza GND A. Zalecane jest jednak podłączenie ekranu do masy funkcjonalnej lub uziemienia szafy metalowej (PE).

W celu precyzyjnego pomiaru temperatury należy uwzględnić prawidłowy pomiar temperatury tzw. zimnych końców. Urządzenie podczas typowej pracy nagrzewa się o około 10°C, co ma wpływ na temperaturę łączówek urządzenia. Należy rozważyć przesunięcie przewodów kompensacyjnych do dodatkowych zacisków w szafie ze stabilną temperaturą. Temperatura tzw. zimnych końców powinna być mierzona za pomocą zewnętrznego czujnika temperatury (np. Pt100) na zaciskach zewnętrznych.

Jeśli czujniki TC są podłączone bezpośrednio do łączówki modułu, możliwa jest kompensacja temperatury zimnych końców za pomocą czujnika wewnętrznego. Temperatura zimnych końców mierzona czujnikiem wewnętrznym jest przypisana do wirtualnych wejść pomiarowych (CJC °C oraz CJC °F). Należy pamiętać o ustawieniu jednakowej jednostki dla temperatury mierzonej i temperatury zimnych końców.

6.2.4 IN6V – sześciokanałowy moduł wejść typu napięciowego IN1 IN2 IN3 IN4 IN5

	Ν	umer	zacisk	ĸu		Opis
1	5	9	13	17	21	Nieużywany
2	6	10	14	18	22	V+ Wejście sygnału napięciowego (+)
3	7	11	15	19	23	V- Wejście sygnału napięciowego (-)
4	8	12	16	20	24	GND A Masa sygnału

Uwaga

Jeśli do podłączenia czujnika używany jest kabel ekranowany, do podłączenia ekranu można użyć złącza GND A. Zalecane jest jednak podłączenie ekranu do masy funkcjonalnej lub uziemienia szafy metalowej (PE).

6.2.5 IN6 – sześciokanałowy uniwersalny moduł wejść analogowych

Nun	ner zaci	isku	Opis
1	5	9	I+ Wyjście prądowe dla podłączenia 4-, 3- i 2-przewodowego
2	6	10	U+ / mV+ Wejście napięciowe dla podłączenia 4-, 3-, 2- przewodowego Sygnał napięcia dla czujników TC, wejście (+)
3	7	11	U- / I+ / mV- Wejście napięciowe dla podłączenia 4- i 2-przewodowego Wejście napięciowe i wyjście prądowe dla podłączenia 3-przew. Sygnał napięcia dla czujników TC, wejście (-)
4	8	12	 I- / 2*I- Prąd powrotny dla podłączenia 4- i 2-przewodowego Podwójny prąd powrotny dla podłączenia 3-przewodowego
13	17	21	+24V OUT (22 mA max) Zasilanie przetwornika. Każde wyjście zabezpieczone jest przez resetowalny bezpiecznik polimerowy 50 mA.
14	18	22	I+ Wejście sygnału pętli prądowej (+)
15	19	23	V+ Sygnał napięcia ± 10 V wejście (+)
16	20	24	 V- Sygnał napięcia ± 10 V wejście (-) I- Wejście sygnału pętli prądowej (-)

Uwaga

Karta IN6T jest fabrycznie kalibrowana dla układu 2 i 3 przewodowego.

Kalibracja dla tych układów jest wspólna.

Na życzenie użytkownika jest możliwość kalibracji w układzie 4 przewodowym.

6.2.6 IN4SG – czterokanałowy moduł czujników tensometrycznych

		N	lumer	zaci	sku			Opis
1	5	9	13					+5 VDC – zasilanie czujnika tensometrycznego
2	6	10	14					IN+ - wejście sygnału z czujnika (+)
3	7	11	15					IN wejście sygnału z czujnika (-)
4	8	12	16					GND – masa zasilania
				17	19	21	23	+ sygnału zerującego TR
				18	20	22	24	- sygnału zerującego TR

Uwaga

Mostki tensometryczne w układzie pół-mostka lub ćwierć-mostka można podłączyć w uzgodnieniu z producentem.

Sygnał zerujący TR1, 2, 3, 4 zeruje odpowiednio kanał 1, 2, 3, 4, lub przy ustawieniu sumy logicznej dowolny TR zeruje wszystkie kanały pomiarowe jednocześnie.

6.2.7 IN3D – trzykanałowy moduł wejść binarnych

Zaciski wejściowe:

Opis zacisków:

N	lumer zacisł	ku	Opis
1	5	9	+12V OUT (48 mA max) Zasilanie przetwornika. Wyjścia są zabezpieczone wspólnym bezpiecznikiem polimerowym 50 mA.
2	6	10	+IN Wejście sygnału impulsowego.
3	7	11	-IN Wejście sygnału impulsowego.
4	8	12	GND A Masa sygnału

6.2.8 IN6D – sześciokanałowy moduł wejść binarnych

	Ν	lumer	zacisk	u		Opis
1	5	9	13	17	21	+24V OUT (48 mA max (6x 8 mA)) Zasilanie przetwornika. Wyjścia są zabezpieczone wspólnym bezpiecznikiem polimerowym 50 mA.
2	6	10	14	18	22	PULS IN Wejście sygnału impulsowego. Ograniczenie prądowe w tabeli poniżej.
3	7	11	15	19	23	GND A Masa sygnału
LED	LED	LED	LED	LED	LED	Dioda LED informująca o statusie wejścia.

Uwaga

Jeśli do podłączenia nadajnika impulsów używany jest przewód ekranowany, ekran powinien być podłączony do masy funkcjonalnej lub uziemienia szafy metalowej (PE).

W module IN6D standardowo ograniczenie prądowe dla wejść ustawione jest na poziomie 3,6 mA. W szczególnych przypadkach istnieje możliwość zmiany poziomu przełączania za pomocą jumperów umiejscowionych na płytce modułu znajdującej się wewnątrz urządzenia. Inne dostępne wartości poziomu przełączania wraz z odpowiadającymi im konfiguracjami jumperów zamieszczono w tabeli poniżej. Ustawienie dotyczy wszystkich sześciu kanałów.

J1	J2	I MAX
		0.3mA
-		0.9mA
	-	3.0mA
-	-	3.6mA

Aby zmienić poziom przełączania konieczne jest odkręcenie tylnej płyty urządzenia, demontaż a następnie montaż płytki modułowej. Prace te powinien wykonywać jedynie odpowiednio wykwalifikowany personel przy jednoczesnym zachowaniu ostrożności oraz wszelkich środków bezpieczeństwa.

6.2.9 2RS485(24V) – moduł dwóch portów RS485 (Modbus RTU Master)

2RS485(24V)

	N	umer	zacis	ku		Opis
1	T1	9				A+ RS485 zacisk A
2	T1	10				B- RS485 zacisk B
3	T2	11				G Masa sygnału
4	T2	12				G Masa sygnału
			13 14	17 18	21 22	+24 VDC OUT (200 mA max) Pomocnicze zasilanie przetworników (+). Zaciski 13, 14, 17, 18, 21, 22 wewnętrznie zwarte. Zabezpieczenie nadprądowe.
			15 16	19 20	23 24	-24 VDC OUT (200 mA max) Pomocnicze zasilanie przetworników (-). Zaciski 15, 16, 19, 20, 23, 24 wewnętrznie zwarte.

Uwaga

Port 1 i port 2 są separowane galwanicznie. Wyjście pomocnicze 24 VDC jest galwanicznie oddzielone od portu 1 i portu 2. Więcej szczegółów na temat podłączenia RS-485 opisano poniżej dla <u>portu RS-485</u> <u>w module M</u>.

6.2.10 2RS485 – moduł dwóch portów RS485 (Modbus RTU Master)

	N	umer	zacisku	Opis
1	T1	9		A+ RS485 zacisk A
2	T1	10		B- RS485 zacisk B
3	T2	11		G Masa sygnału
4	T2	12		G Masa sygnału

Uwaga

Port 1 i port 2 są separowane galwanicznie. Więcej szczegółów na temat podłączenia RS-485 opisano poniżej dla portu RS-485 w module M.

	N	umer	zacisk	ĸu		Opis
1	5	9	13	17	21	+24V OUT Zasilanie przetwornika. Wyjścia zabezpieczone są przez wspólny resetowalny bezpiecznik polimerowy.
2	6	10	14	18	22	HRT+ Wejście sygnału HART+ (przetwornik pasywny oraz przetwornik aktywny). Podłączenie urządzenia w trybie Secondary Master.
3	7	11	15	19	23	HRT- Wejście sygnału HART- (przetwornik aktywny oraz przetwornik pasywny zasilany z zewnętrznego źródła zasilania). Podłączenie urządzenia w trybie Secondary Master.
4	8	12	16	20	24	SHIELD Podłączenie ekranu kabla.

Uwaga

Moduł posiada wewnętrzny rezystor 250 Ω (domyślnie wyłączony, możliwość zmiany w menu I/O). W przypadku zaniku napięcia zasilania rezystor jest wyłączany.

Łączówki modułu są wewnętrznie połączone równolegle. Możliwe jest utworzenie połączenia multidrop z wykorzystaniem połączenia na linii lub z wykorzystaniem łączówek modułu.

Urządzenie może być skonfigurowane jako Primary Master lub jako Secondary Master – należy rozważyć włączenie/wyłączenie wewnętrznego rezystora w zależności od zastosowanego układu.

Możliwe jest podłączenie ekranu kabla do zacisków łączówki modułu. Jeśli przyrząd jest montowany w metalowej szafie, to wskazane jest łączenie ekranu bezpośrednio do szafy, z pominięciem łączówki modułu. Ekran należy połączyć z GND na obu końcach kabla. Jeżeli istnieje obawa przepływu prądu wyrównawczego przez ekran, to ekran należy uziemiać tylko z jednej strony (przy urządzeniu).

6.2.12 OUT6RL – sześciokanałowy moduł wyjść przekaźnikowych OUT1 OUT2 OUT3 OUT4 OUT5 OUT6 OUT6RL 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2 6 б Շ б б б ጉ b ጉ Շ б Շ ć

	N	lumer	zacisk	(U		Opis
1	5	9	13	17	21	Zapiek uniópiewa przekoźnika (AC/DC)
2	6	10	14	18	22	Zacisk wyjsciówy przekaznika (AC/DC)
3	7	11	15	19	23	Zapiek uniópiewa przekoźnika (AC/DC)
4	8	12	16	20	24	Zacisk wyjsciówy przekaznika (AC/DC)

Uwaga

Wyjścia 1 - 6 są separowane galwanicznie.

6.2.13 OUT3 – trzykanałowy moduł wyjść analogowych

Numer zacisku						Opis
1		9		17		V+
2		10		18		Sygnał napięciowy 0 +10 V wyjście (+)
3		11		19		V-
4		12		20		Sygnał napięciowy 0 +10 V wyjście (-)
	6		14		22	I+ Źródło pętli prądowej 0-24 mA wyjście (+)
	5		13		21	I- / GND A
	7		15		23	Źródło pętli prądowej 0-24 mA wyjście (-)
	8		16		24	Ten zacisk jest także masą sygnału.

Uwaga

Wyjścia 1, 2 i 3 są separowane galwanicznie.

Każde wyjście może być skonfigurowane do jednego tylko trybu źródła napięcia lub prądu. Wyjście prądowe aktywne - nie może być zasilane z zewnętrznego źródła napięcia.

Poprawne podłączenie dla modułu OUT3.

6.2.14 PSBATT – moduł do zasilania akumulatorowego

Numer zacisku	Opis
1	R
	Podłączenie zewnętrznej diody LED.
2	G
	Podłączenie zewnętrznej diody LED.
3	Nieużywany
4	
5	+24 VDC SUPPLY IN (2,5 A max)
6	Zasilanie przyrządu oraz modułu PSBATT (+)
7	-24 VDC SUPPLY IN (2,5 A max)
8	Zasilanie przyrządu oraz modułu PSBATT (-)
9	2x9,6 V NiMH (typowo 4600 mAh lub 2000 mA)
11	Podłączenie akumulatorów NiMH (+), pakiet BATT1
10	2x9,6 V NiMH (typowo 4600 mAh lub 2000 mA)
12	Podłączenie akumulatorów NiMH (-), pakiet BATT2
13	NTC1
14	Podłączenie termistora NTC, dla BATT1
15	NTC2
16	Podłączenie termistora NTC, dla BATT2
17	Zasilanie ON/OFF
18	Podłączenie zewnętrznego wyłącznika zasilania
19	
20	
17	Backup
18	Zaciski 17 i 18 oraz zaciski 19 i 20 muszą być zwarte zewnętrznie
19	
20	
21	+24 VDC POWER OUT (1 A max)
22	Sygnar wyjsciowy zasilania (+). Nalezy podłączyć do zacisku 13 modułu M.
23	-24 VDC POWER OUT (1 A max)
24	Sygnał wyjściowy zasilania (-). Należy podłączyć do zacisku 14 modułu M.

Uwaga

24 V IN i 24 V OUT nie są separowane galwanicznie.

Dwukolorowa dioda LED wskazuje na status pracy modułu oraz stan baterii:

- krótkie impulsy w kolorze zielonym (świecenie 0,5 s / wygaszenie 1,5 s): ładowanie wstępne (bateria rozładowana),
- impulsy w kolorze zielonym (świecenie 0,5 s / wygaszenie 0,5 s): ładowane zasadnicze,
- długie impulsy w kolorze zielonym (świecenie 1,5 s / wygaszenie 0,5 s): ładowanie podtrzymujące (bateria naładowana),
- zielony kolor diody (sygnał ciągły): bateria naładowana (praca przyrządu z baterii),
- impulsy w kolorze czerwonym (świecenie 0,5 s / wygaszenie 0,5 s): niski poziom baterii (praca przyrządu z baterii),
- czerwony kolor diody (sygnał ciągły):
- stan awaryjny, np. awaria czujnika temperatury lub baterii, przekroczenie temperatury.

W przypadku zainstalowanego modułu PSBATT zabronione jest podłączenie zasilacza do modułu M (zaciski 13, 14, 15). Zasilacz należy podłączyć wyłącznie do modułu PSBATT (24V IN). Sygnał wyjściowy zasilania należy podłączyć z modułu PSBATT (24V OUT) do zacisków 13, 14 modułu M. Zacisk 15 modułu M powinien być podłączony do GND lub PE. Należy używać wyłącznie dedykowanego zasilacza.
Wyłącznik podwójny służy do zasilania przyrządu, nie powoduje odłączenia ładowania akumulatorów.

Od 1 kwietnia 2020 moduł PSBATT jest produkowany wyłącznie w wersji 1.2. Wersja 1.2 nie jest kompatybilna wstecz. Przedstawiony sposób podłączenia sygnałów dotyczy wersji 1.2 modułu. W przypadku modułu w wersji 1.0 lub w wersji 1.1 przy podłączaniu sygnałów konieczny jest kontakt z Producentem.

Rys. 6.2 Widok płyty tylnej urządzenia (Moduł M).

6.3.1 Podłączenie wyjścia analogowego

Uwaga

Źródło prądowe pasywne - wymaga zewnętrznego źródła napięcia.

6.3.2 Podłączenie wyjść przekaźnikowych

R	L 1	R	L 2	R	L 3	R	_ 4
3	4	5	6	7	8	9	10
•	•	•	•	•	•	•	•
	♦		♦	↓ Ţ	♦		♦

6.3.3 Podłączenie linii transmisji danych RS485

Uwaga

Standard RS-485 pozwala na podłączenie do 32 urządzeń (nadajników/odbiorników). Konfiguracja RS485-MODBUS posiada jeden kabel magistrali, wzdłuż którego urządzenia są połączone bezpośrednio (połączenie łańcuchowe) lub kablami o krótkim wyprowadzeniu.

Maksymalna długość magistrali zależy od szybkości transmisji, kabla (wymiaru, pojemności lub impedancji charakterystycznej), liczby obciążeń na łańcuchu. Dla szybkości transmisji 9600 b/s i 0,125 mm² (AWG26) lub większego przekroju maksymalna długość wynosi 1200 metrów. Wyprowadzenia muszą być krótkie, nie należy przekraczać długości 20 m.

Aby zminimalizować odbicia od końca kabla RS-485, wymagane jest umieszczenie terminacji linii w pobliżu każdego z 2 końców magistrali. Urządzenie posiada wewnętrzny system terminujący, aktywowany przełącznikiem DIP po lewej stronie listwy zaciskowej. Prawidłowe działanie terminatora wymaga ustawienia obu przełączników w tej samej pozycji.

Do wszystkich portów RS-485 należy użyć "wspólnego" przewodu. W przypadku urządzenia DL2 jako wspólnego sygnału należy zastosować zasilanie "-" (zacisk nr 14) lub masę funkcjonalną (zacisk nr 15).

6.3.4 Port Ethernet

Gniazdo portu Ethernet (100Base-T) znajduje się z tyłu przyrządu. Wyprowadzenia gniazda są zgodne z EIA/TIA-568A/B. Do gniazda można podłączać kabel LAN zakończony wtykiem RJ-45 (Patch Cord).

7 PANEL PRZEDNI I PODSTAWOWE PRZYCISKI FUNKCYJNE

7.1 Panel przedni urządzenia

W panel przedni urządzenia wbudowany jest dotykowy, kolorowy, 4" wyświetlacz LCD, stanowiący podstawowe narzędzie komunikacji z użytkownikiem.

-	Kanat 30 Kanat 30 Temperatura otoczenia	
4	21.85	1
3	▲ 22.76 ▼ 21.10 RESET 11-05-18 13:52 -400 -200 [s]	2

Rys. 7.1 Panel przedni urządzenia.

Wyświetlacz podzielony jest na dwa główne obszary:

- 1. <u>Pasek tytułowy</u> z ikonami funkcyjnymi; naciśnięcie ekranu na wysokości paska tytułowego powoduje wyświetlenie <u>paska menu</u>, który umożliwia przełączanie między oknami.
- Ekran główny służący do wyświetlania wszystkich ekranów, wyników pomiarów dla każdego kanału oraz wprowadzania danych (z wykorzystaniem klawiatury ekranowej).

Ponadto, na panelu przednim urządzenia znajduje się także:

- 3. Port USB umożliwiający podłączenie pamięci zewnętrznej USB typu flash, w celu przeniesienia danych zapisanych w pamięci wewnętrznej urządzenia do komputera.
- 4. Dioda LED sygnalizuje procesy zachodzące w urządzeniu poprzez kolory:
 - Zielony świeci podczas tworzenia nowego pliku archiwum,
 - Niebieski świeci podczas uruchamiania urządzenia; podczas zapisywania/odczytywania plików (pulsuje podczas kopiowania danych pomiędzy pamięcią wewnętrzną a pamięcią zewnętrzną USB); świeci, gdy wyświetlacz jest wygaszony na 0%,
 - Czerwony informacja o błędach.

Do obsługi ekranu dotykowego nie należy używać ostrych lub metalowych przyrządów. Niewłaściwa eksploatacja może grozić uszkodzeniem wyświetlacza.

7.1.1 Pasek tytułowy

Rys. 7.2 Pasek tytułowy.

Pasek tytułowy znajduje się w górnej części ekranu i pełni głównie funkcję informacyjną, niektóre ikony posiadają również dodatkowe funkcje.

m

Logo producenta: ikona funkcyjna, naciśnięcie powoduje utworzenie zrzutu ekranu do pamięci urządzenia (więcej informacji w rozdziale <u>Print screen</u>).

A

Informacja o statusie zalogowania: ikona funkcyjna, naciśnięcie powoduje wylogowanie (więcej informacji w rozdziale <u>Logowanie</u>).

Tytuł aktualnie otwartego okna (więcej informacji w rozdziale <u>OKNA</u> Trendy <u>UŻYTKOWNIKA</u>).

Status alarmów, pulsująca/świecąca ikona świadczy o wystąpieniu alarmu: ikona funkcyjna, naciśnięcie powoduje przełączenie do okna alarmów (więcej informacji w rozdziale <u>Alarmy</u>).

REC

Status archiwum: obecność ikony informuje o włączonym procesie archiwizacji (więcej informacji w oknie <u>Archiwum</u>).

07-06-18 Data i czas odczytane z zegarka RTC. 12:50

7.1.2 Pasek menu

Pasek menu umożliwia nawigację pomiędzy oknami. Jest wywoływany poprzez naciśnięcie ekranu na wysokości paska tytułowego.

Rys. 7.3 Naciśnięcie ekranu na wysokości paska tytułowego wywołuje pojawienie się paska menu, umożliwiającego nawigację między oknami.

Przełączenie na okno wyniku pojedynczego na poprzedni kanał (albo otwarcie ekranu wyniku pojedynczego dla ostatniego aktywnego kanału)

i

Otwarcie okna: Informacje o urządzeniu (więcej informacji w rozdziale <u>Informacje</u> <u>o urządzeniu</u>)

Otwarcie okna: Tabele wyników (więcej informacji w rozdziale Tabele wyników)

Otwarcie okna: Trendy (więcej informacji w rozdziale Trendy)

Otwarcie okna: Archiwum (więcej informacji w rozdziale Archiwum)

Otwarcie okna: Menu Główne (więcej informacji w rozdziale Menu główne)

Otwarcie okna: Alarmy (więcej informacji w rozdziale <u>Alarmy</u>)

Przełączenie okna wyniku pojedynczego na następny kanał (albo otwarcie ekranu wyniku pojedynczego dla pierwszego aktywnego kanału).

PIERWSZE URUCHOMIENIE I PODSTAWOWE CZYNNOŚCI 8

Po podłączeniu urządzenia do źródła zasilania, włącza się ono automatycznie po upływie kliku sekund.

Urządzenie ma wstępnie skonfigurowany hardware i ustawiony język polski. Przed przystąpieniem do konfiguracji, należy zalogować się na odpowiedni poziom dostępu.

8.1 Kontrola dostępu, logowanie i zmiana hasła użytkownika

Kontrola dostępu 8.1.1

W rejestratorze danych DL2 zastosowano moduł kontroli dostępu mający za zadanie ograniczenie możliwości zmiany parametrów pracy urządzenia oraz kopiowania danych z urządzenia przez nieupoważnionych użytkowników lub operatorów.

W urządzeniu przewidziano 5 poziomów dostępu:

Brak zalogowanego użytkownika

Standardowy tryb pracy urządzenia, umożliwiający przeglądanie ekranów. Poziom ten nie pozwala na modyfikację parametrów oraz uniemożliwia dostęp do urządzenia przy pomocy klucza USB. Operator nie może otworzyć żadnych okien konfiguracyjnych za wyjątkiem okna logowania. Poziom może zostać wyłączony (więcej informacji w rozdziale zmiana hasła).

Użytkownik •

Pierwszy poziom autoryzowanego użytkownika. Umożliwia przeglądanie ustawień urządzenia, sterowanie pracą archiwum (start, stop, nowy plik archiwum), resetowanie wartości minimum i maksimum, kasowanie stanu liczników, oraz kopiowanie plików archiwum na port USB. Użytkownik może wykonywać zrzuty ekranu.

Administrator

Drugi poziom autoryzowanego użytkownika. Dostępne są takie same funkcje jak dla poziomu Użytkownika, dodatkowo poziom Administratora umożliwia przeglądanie i modyfikację ustawień urządzenia, usuwanie plików archiwum oraz zapis i odczyt ustawień na pendrive. Administrator może zablokować Użytkownikowi możliwość sterowania pracą archiwum.

Serwis

Poziom dostępny wyłącznie dla autoryzowanego Serwisu firmy Metronic AKP.

Producent

Poziom dostępny wyłącznie dla producenta.

8.1.2 Logowanie

Aby zalogować się do odpowiedniego poziomu dostępu należy nacisnąć przycisk 🗰

na rozwijanym pasku menu, a następnie wybrać ikonę 🤽. Jest to jedyny aktywny dla niezalogowanego użytkownika piktogram w oknie Menu Główne. Następnie, z rozwijanej listy należy wybrać odpowiedni poziom dostępu i wpisać hasło przy pomocy ekranowej klawiatury haseł. Całość operacji należy potwierdzić za pomocą przycisku Loguj.

Podczas pierwszego logowania konieczne jest użycie haseł domyślnych.

Poziom dostępu	Hasło
Użytkownik	0
Administrator	1

Po pierwszym zalogowaniu hasła mogą być zmienione na inne, więcej informacji w rozdziale Zmiana hasła.

Wylogowanie (niezależnie od poziomu dostępu) odbywa się automatycznie po upływie 5 minut bezczynności. W celu wylogowania się po krótszym czasie, należy nacisnąć ikonę (zalogowany Administrator) lub ikonę (zalogowany Użytkownik) znajdującą się na pasku tytułowym I nacisnąć przycisk **Wyloguj**.

Przed zalogowaniem się na inny poziom dostępu nie jest konieczne wcześniejsze wylogowanie.

8.1.3 Zmiana hasła

Zmiany hasła można dokonać w oknie Logowanie. Po zalogowaniu starym hasłem z rozwijanej listy należy wybrać poziom, dla którego hasło ma zostać zmienione. Następnie należy wprowadzić dwukrotnie nowe hasło i potwierdzić operację przy pomocy przycisku **Zmień**.

Klawiatura haseł umożliwia użycie jedynie wielkich i małych liter oraz znaków specjalnych. Nie ma możliwości wprowadzenia liter specyficznych dla danego języka. Opcja wpisania znaków specyficznych dla danego języka jest dostępna we wszystkich pozostałych klawiaturach urządzenia.

Istnieje możliwość zapisania braku hasła – należy nacisnąć na pole Nowe hasło oraz Powtórz nowe hasło i nie wpisywać żadnych znaków, a następnie potwierdzić operację (**Zmień**). Jeśli zapisano brak hasła dla Użytkownika, automatycznie zdjęty jest poziom dostępu *Brak zalogowanego użytkownika* – nie ma możliwości wylogowania z poziomu Użytkownika.

Administrator poza zmianą swojego hasła ma również możliwość zmiany hasła Użytkownika (bez konieczności znajomości poprzedniego hasła). Jeśli hasło Administratora zostanie zapomniane lub utracone, należy skontaktować się z Serwisem firmy Metronic AKP.

8.2 Zmiana języka

Zmiana języka możliwa jest z poziomu Administratora (więcej w rozdziale Logowanie).

W celu zmiany języka urządzenia należy nacisnąć przycisk 🏁 na rozwijanym pasku

menu, następnie wybrać ikonę 🍄 i przejść do zakładki **Ogólne**. Z rozwijanej listy w polu **Język** należy wybrać jeden z siedmiu dostępnych języków: EN (ENGLISH), DE (DEUTSCH), ES (ESPAÑOL), FR (FRANÇAIS), IT (ITALIANO), PL (POLSKI), PT (PORTUGUÊS).

Po wyborze języka i potwierdzeniu wyboru , należy nacisnąć na dowolną ikonę na rozwijalnym pasku menu (inną niż ikona Menu Głównego). Zostanie wyświetlony komunikat z pytaniem o potwierdzenie chęci dokonania zmian.

Po dostarczeniu urządzenie ma ustawiony język polski. Po wyborze opcji **Przywróć ustawienia fabryczne**, urządzenie uruchomi się w języku angielskim (więcej informacji w rozdziale <u>Ustawienia fabryczne</u>).

8.3 Sugerowana kolejność konfiguracji ustawień

Konfiguracja poszczególnych parametrów przyrządu może być wykonana w dowolnej kolejności, jednak niektóre ustawienia są zależne od innych parametrów. Sugerowana kolejność ustawień podczas pierwszej konfiguracji przyrządu jest następująca:

 \mathbf{O}_{0}^{α}

10. Powiadomienie E-mail

- $\overset{\textcircled{3}}{=} \rightarrow \overset{\textcircled{1}23.4}{=} \rightarrow \text{Alarm 1/Alarm 2} \rightarrow \text{Powiadomienie E-mail } (\square/\square) \rightarrow \checkmark$
- $\overset{\textbf{a}}{=} \rightarrow \Xi \stackrel{1}{=} \rightarrow \Sigma 1/\Sigma 2 \rightarrow \text{Powiadomienie E-mail } (\Box/\Box) \rightarrow \checkmark$
- $\blacksquare \rightarrow \bigoplus \rightarrow$ Ethernet \rightarrow konfiguracja $\rightarrow \checkmark$

Urządzenie musi być podłączone do sieci. Przed konfiguracją zakładki E-mail należy skonfigurować zakładkę Ethernet i zresetować urządzenie.

```
 \stackrel{\textbf{de}}{\longrightarrow} \rightarrow \textbf{E-mail} \rightarrow \textbf{Ogolne} \rightarrow konfiguracja \rightarrow \textbf{Odbiorcy} \rightarrow konfiguracja \rightarrow \rightarrow \textbf{Raport cykliczny} \rightarrow konfiguracja \rightarrow \textbf{V}
```

11. Wyświetlacz (jasność ekranu/kolor tła/wygaszanie ekranu)

 \rightarrow \clubsuit \rightarrow Wyświetlacz \rightarrow konfiguracja \rightarrow \checkmark

12. Zmiana hasła administratora

ightarrow
ightarrow
ightarrow
m Zmiana hasła ightarrow
ightarrow

Po zakończeniu konfiguracji i potwierdzeniu zmian V, należy nacisnąć na dowolną ikonę z rozwijalnego paska menu (inną niż ikona Menu Głównego). Zostanie wyświetlony komunikat z pytaniem o potwierdzenie chęci dokonania zmian. Uruchomienie archiwizacji

w oknie Archiwum (ikona 🔳 na pasku menu), po naciśnięciu przycisku START.

Szczegółowe informacje dotyczące programowania poszczególnych ustawień w rozdziale <u>PROGRAMOWANIE USTAWIEŃ</u>.

Dzięki zachowaniu tego samego interfejsu, konfiguracja urządzenia za pomocą programu komputerowego *DL2 Config.exe* odbywa się w sposób analogiczny jak konfiguracja z poziomu urządzenia. Po zakończeniu konfiguracji z wykorzystaniem komputera, należy wgrać do urządzenia plik ustawień *.par, używając zewnętrznej pamięci USB typu flash, zgodnie z informacjami podanymi w następnym rozdziale.

8.4 Zapis i odczyt plików za pomocą portu USB

Z rozwijalnego paska menu należy wybrać przycisk **a**, a następnie ikonę **b**. Po lewej stronie ekranu znajduje się okno z listą plików archiwum i zrzutów ekranu. Po prawej stronie ekranu znajdują się przyciski funkcyjne.

Po podłączeniu zewnętrznej pamięci USB, po lewej stronie ekranu wyświetlane jest okno ze znajdującymi się na niej z plikami ustawień (*.par). Pamięć zewnętrzna musi być w formacie FAT (nie w formacie NTFS), nie należy podłączać dysku twardego. Kompatybilność ze wszystkimi urządzeniami pamięci USB nie jest gwarantowana. Nie należy używać przedłużacza do podłączania pamięci USB (może to wywołać zakłócenia radiowe).

Za pomocą przycisków funkcyjnych możliwe jest: kopiowanie danych z urządzenia na zewnętrzną pamięć USB (pliki archiwum, ustawień i zrzuty ekranu), kopiowanie plików z zewnętrznej pamięci USB (pliki ustawień) i usuwanie plików archiwum z urządzenia (z wyjątkiem bieżących archiwów).

Aby zapisać bieżące pliki archiwum, należy nacisnąć przycisk **Zapisz bieżące archiwa na USB.** W wyniku tej operacji, do pamięci zewnętrznej USB zostaną zapisane trzy pliki archiwum: danych, liczników i zdarzeń.

Aby zapisać inny plik na zewnętrznej pamięci USB, należy wybrać go z listy (zostanie zaznaczony na niebiesko). Następnie należy nacisnąć przycisk **Zapisz wybrany na USB.**

Rys. 8.1 Przykładowy wygląd okna USB.

Proces zapisu sygnalizowany jest przez niebieską diodę znajdującą się na panelu przednim urządzenia. Po zakończeniu procesu wyświetlany jest odpowiedni komunikat.

W celu skasowania wybranego pliku archiwum, w pierwszej kolejności należy zaznaczyć wybrany plik na liście, a następnie nacisnąć przycisk **Usuń wybrany**.

Wyciągnięcie pendrive przed ukończeniem procedury zapisu, może spowodować uszkodzenie kopiowanych plików.

Istnieje również możliwość:

- zapisu ustawień na kluczu USB (należy nacisnąć przycisk Zapisz na USB),
- odczytu ustawień z klucza USB (należy zaznaczyć plik ustawień i nacisnąć przycisk Odczytaj z USB).

Po odczytaniu pliku ustawień z zewnętrznej pamięci USB, urządzenie automatycznie wyłączy się i uruchomi ponownie z nowymi ustawieniami.

8.5 Ustawienia fabryczne

Aby przywrócić urządzenie do ustawień fabrycznych, zaloguj się jako Administrator.

Przed przywróceniem urządzenia do ustawień fabrycznych, zaleca się zapisać ustawienia na kluczu USB, w innym wypadku zostaną utracone.

Pliki archiwum nie zostaną usunięte.

Hasło Administratora nie zostanie zmienione. Hasło Użytkownika zostanie przywrócone do domyślnego.

Należy wybrać przycisk s z paska menu i w oknie Menu Główne nacisnąć ikonę . Następnie należy wybrać zakładkę **Serwis** i przycisk **Przywróć ustawienia fabryczne**. Urządzenie automatycznie uruchomi się ponownie z ustawieniami fabrycznymi w używanym języku (jeśli zmiana języka została zapisana).

Ustawienia zostaną utracone, w szczególności ustawienia wejść/wyjść (I/O) – wszystkie wejścia/wyjścia zostaną wyłączone. Należy ponownie skonfigurować urządzenie, zaczynając od ustawień wejść/wyjść (I/O), w kolejności opisanej w podrozdziale

<u>Sugerowana kolejność konfiguracji ustawień</u> lub wgrać zapisane ustawienia (<u>Zapis i odczyt</u> <u>plików za pomocą portu USB</u>).

9 DANE TECHNICZNE

Panel przedni				
Typ wyświetlacza	LCD TFT 4" 800 px X 480 px podświetlanie LED			
Wymiary wyświetlacza	86.4 mm X 52.5 mm			
Klawiatura	panel dotykowy rezystancyjny			
Dodatkowa sygnalizacja	Dioda LED RGB			
Port USB - pły	ta czołowa			
Wersja	USB 2.0 (o ograniczonej funkcjonalności, do podłączenia pamięci masowej FLASH)			
Typ portu	typu A, zgodnie ze standardem USB			
Port Ethernet -	• płyta tylna			
Interfejs	10/100 Base-T Ethernet			
Typ złącza	RJ-45			
Protokół transmisji	Serwer WWW, Modbus TCP Client/Server ICMP (ping)			
Modbus TC	P Client			
llość jednocześnie otwartych połączeń	Max 20			
llość odczytywanych wartości	Max 30			
Modbus TC	P Server			
Ilość jednocześnie otwartych połączeń	Max 4			
Port RS-485 -	płyta tylna			
Sygnały wyprowadzone na łączówce	A(+), B(-)			
Separacja galwaniczna	Brak			
Maksymalne obciążenie	32 odbiorniki/nadajniki			
Protokół transmisji	Modbus RTU Slave			
Prędkość transmisji	1.2, 2.4, 4.8, 9.6, 19.2, 38.4, 57.6, 115.2 kbps			
Kontrola parzystości	Even, Odd, None			
Ramka	1 bit startu, 8 bitów danych, 1 bit stopu			
Maksymalna długość linii	1200 m			
Terminacja linii	Vcc-A(+)-B(-)-G: 390 Ω - 220 Ω - 390 Ω (aktywowana przełącznikiem DIP SW)			
Maksymalne napięcie różnicowe A(+), B(-)	-7 V +12 V			
Minimalny sygnał wyjściowy nadajnika	1,5 V (przy R∟= 54 Ω)			
Minimalna czułość odbiornika	200 mV / R _{IN} = 12 kΩ			
Minimalna impedancja linii transmisji danych	54 Ω			
Zabezpieczenie zwarciowe / termiczne	Tak / Tak			
Pamięć wewnętrzna				
Typ pamięci	Flash			
Pojemność pamięci	2 GB			
Orientacyjny czas rejestracji przy częstości zapisu, co 5 s dla 16 kanałów pomiarowych	ok. 2 lata			
Zasilanie				
Napięcie zasilania	24 VDC (20 30 VDC)			
Pobór mocy maksymalny	12 W			
Zabezpieczenie	Wewnętrzny bezpiecznik zwłoczny 3,15 A, wymiana wyłącznie przez serwis firmowy			
Podłączenie przewodów (łączówki śrubowe)				
Тур	Łączówki śrubowe rozłączalne			

Przekrój przewodów	Przewód i linka 0,14 … 1,5 mm ² linka z końcówkami tulejkowymi 0,25 1,5 mm ² AWG 30 / 14		
Obudowa			
Typ obudowy	Panelowa, tworzywo niepalne "Noryl"		
Wymiary z łączówkami (szer. X wys. X gł.)	144 mm X 72 mm X 127 mm		
Wymiary otworu w panelu (szer. X wys.)	138 ⁺¹ mm X 68 ^{+0,7} mm		
Maksymalna grubość płyty panelu	5 mm		
Waga	0,5 kg		
Staniań achrony	IP30 od strony płyty czołowej		
Stoplen ochrony	IP20 od strony płyty tylnej		
Warunki śr	odowiskowe		
Temperatura pracy	0 +50 °C lub 0 +40 °C w zależności od konfiguracji ⁽¹⁾		
Wilgotność	5 95% (bez kondensacji)		
Wysokość	< 2000 m n.p.m.		
Temperatura przechowywania	-30 +70 °C		
Stopień zanieczyszczenia	PD2		
	EMC Directive 2014/30/UE		
EMC	EN 61326-1:2013 Tabela 2 (odporność)		
	EN 61326-1:2013 Klasa A (emisja)		
RoHS	RoHS Directive 2011/65/UE		
⁽¹⁾ Jeśli w urządzeniu zainstalowano moduł IN6I(24V) lub moduł 2RS485(24V) pracujący jako źródło			

⁽¹⁾Jeśli w urządzeniu zainstalowano moduł IN6I(24V) lub moduł 2RS485(24V) pracujący jako źródło napięcia, zakres temperaturowy wynosi 0 .. +40 °C. W pozostałych konfiguracjach zakres temperaturowy wynosi 0 .. +50 °C.

Wyjście analogowe 4-20mA		
Sygnał wyjściowy	4-20mA (3,6 22 mA)	
Zasilanie obwodu pętli prądowej	Nie (wymagane zewnętrzne źródło zasilania)	
Maksymalne napięcie pomiędzy I+ i I-	28 VDC	
Minimalne napięcie zasilania pętli prądowej	9 VDC (R _L = 0 Ω)	
Rezystancja pętli (R∟)	0500 Ω	
Separacja galwaniczna od napięcia zasilania	250 VAC; 1500 VAC przez 1 min	
Wyjścia dwustanowe		
llość wyjść	4	
Typ wyjść	Przekaźniki półprzewodnikowe	
Maksymalne napięcie	60 V AC/DC	
Maksymalny prąd obciążenia	0,1 A	

MODUŁY WEJŚĆ / WYJŚĆ (I/O)

IN6I(24V), IN6I – sześciokanałowy moduł wejść typu 0-20mA lub 4-20mA		
Liczba wejść	6	
Zakres pomiarowy	0–20 mA; 4–20 mA; (faktyczny zakres -22 22 mA)	
Rozdzielczość	0,001 mA	
Błąd podstawowy (T _a = +25 °C)	< ±0,1% zakresu pomiarowego (typowo < ±0,05%)	
Dryft temperaturowy	< ±0,02% /°C zakresu pomiarowego	
Rezystancja wejściowa	12 Ω ±10%	
Maksymalne napięcie wejściowe	± 40 VDC	

Zabezpieczenie wejścia	Bezpiecznik polimerowy 50 mA
Zasilanie przetworników z przyrządu	
moduł IN6I(24V)moduł IN6I	24 VDC ±15% / max 22mA Brak
Separacja galwaniczna od innych obwodów	250 VAC; 1500 VAC przez 1 min
Separacja galwaniczna między kanałami	Brak

IN6T – sześciokanałowy moduł wejść temperaturowych			
Liczba wejść	6		
Typ czujnika	 Rezystancyjny (tabela poniżej); 0 4500 Ω Termoelement (tabela poniżej); ±140 mV 		
Maksymalne napięcie wejściowe	± 30 VDC		
Separacja galwaniczna od innych obwodów	250 VAC; 1500 VAC przez 1 min		
Separacja galwaniczna między kanałami	Brak		
Specyfikacja dla	wejść typu RTD		
Sposób podłączenia	2-р.; 3-р.; 4-р.		
Prąd czujnika	200 μΑ		
Zakres pomiarowy	04500 Ω		
Rozdzielczość	0,05 Ω		
Kompensacja rezystancji przewodów w podłączeniu 3-p.	Automatyczna		
Korekta rezystancji przewodów w podłączeniu 2-p.; 3-p.; 4-p.	Stała w zakresie –99,99 +99,99 Ω		
Maksymalna rezystancja przewodów doprowadzających do czujnika	20 Ω		
Specyfikacja dla	wejść typu TC		
Zakres pomiarowy	-140 +140 mV		
Rozdzielczość	0,01 mV		
Kompensacja spoiny odniesienia	 Wartością z dowolnego innego kanału pomiarowego lub wartość stała, pomiar czujnikiem wewnętrznym: dokładność ±2,5 °C (możliwość kalibracji przez użytkownika), dla termoelementu B – brak kompensacji 		

IN6V – sześciokanałowy moduł wejść typu napięciowego		
Liczba wejść	6	
Typ czujnika	 0-10V (2-10V, 0-5V, 1-5V) Źródło napięcia liniowego 	
Zakres pomiarowy	-10 +10 VDC (lub podzakres) (faktyczny zakres -11 +11 VDC)	
Rozdzielczość	0,0001 V	
Błąd podstawowy (T _a = +25 °C)	< ±0,1% zakresu pomiarowego (typowo < ±0,05%)	
Dryft temperaturowy	< ±0,02% /°C zakresu pomiarowego	
Rezystancja wejściowa	>100 kΩ	
Maksymalne napięcie wejściowe	± 40 VDC	
Separacja galwaniczna od innych obwodów	250 VAC; 1500 VAC przez 1 min	
Separacja galwaniczna między kanałami	Brak	

IN6 – sześciokanałowy uniwersalny moduł wejść analogowych			
Liczba wejść	6		
	• Rezystancyjny (tabela poniżej); 0 4500 Ω		
Typ czujnika	 Termoelement (tabela poniżej); ±140 mV 		
	 0–20mA; 4–20mA (zasilania pętli z modułu) 		
	• ±10V / 0-10V (2-10V, 0-5V, 1-5V)		
Maksymalne napięcie wejściowe	± 30 VDC		
Separacja galwaniczna od innych obwodów	250 VAC; 1500 VAC przez 1 min		
Separacja galwaniczna między kanałami	Brak		
Specyfikacja dla			
Sposób podłączenia	2-p.; 3-p.; 4-p.		
Prąd czujnika	200 μA		
Zakres pomiarowy	04500 Ω		
Rozdzielczość	0,05 Ω		
Kompensacja rezystancji przewodów w podłączeniu 3-p.	Automatyczna		
Korekta rezystancji przewodów w podłączeniu 2-p.; 3-p.; 4-p.	Stała w zakresie –99,99 +99,99 Ω		
Maksymalna rezystancja przewodów doprowadzajacych do czujnika	20 Ω		
Specyfikacja dla	wejść typu TC		
Zakres pomiarowy	-140 +140 mV		
Rozdzielczość	0,01 mV		
Kompensacja spoiny odniesienia	 Wartością z dowolnego innego kanału pomiarowego lub wartość stała, pomiar czujnikiem wewnętrznym: dokładność ±2,5 °C (możliwość kalibracji przez użytkownika), dla termoelementu B – brak kompensacji 		
Specyfikacja dla wejścia	typu 0-20mA, 4-20mA		
Zakres pomiarowy	0–20 mA; 4–20 mA; (zakres dopuszczalny -22 22 mA)		
Rozdzielczość	0,001 mA		
Błąd podstawowy (T _a = +25 °C)	< ±0,1% pełnego zakresu pomiarowego (typowo < ±0,05%)		
Dryft temperaturowy	< ±0,02% /°C pełnego zakresu pomiarowego		
Rezystancja wejściowa	12 Ω ±10%		
Zabezpieczenie wejścia	Bezpiecznik polimerowy 50 mA		
Specyfikacja dla wejść typu ±10V / 0-10V			
Zakres pomiarowy	-10 +10 VDC (lub podzakres) (zakres dopuszczalny -11 +11 VDC)		
Rozdzielczość	0,0001 V		
Błąd podstawowy (T _a = +25 °C)	< ±0,1% pełnego zakresu pomiarowego (typowo < ±0,05%)		
Dryft temperaturowy	< ±0,02% /°C pełnego zakresu pomiarowego		
Rezystancja wejściowa	>100 kΩ		

IN4SG – czterokanałowy moduł wejść tensometrycznych		
Liczba wejść pomiarowych	4	
Liczba wejść cyfrowych	4	
Typ czujnika	mostek tensometryczny, tensometr	
Zakres pomiarowy	-30 +30 mV	
Rozdzielczość	0,0001 mV	
Błąd podstawowy	< ±0,1% zakresu pomiarowego 10mV (typowo < ±0,05%)	
Dryft temperaturowy	< ±0,01% /°C pełnego zakresu pomiarowego	
Napięcie zasilania czujnika tensometrycznego	5 VDC	
Wejście zerujące (tara)	24 VDC/5 mA (zakres 10-36 VDC)	
Poziom przełączania wejścia zerującego	Około 6VDC	
Minimalna rezystancja mostka dla 4 wejść	250 Ω	
Minimalna rezystancja mostka dla 2 wejść	125 Ω	
Minimalna rezystancja mostka dla 1 wejścia	62 Ω	
Maksymalne napięcie wejściowe	± 40 VDC	
Separacja galwaniczna od innych obwodów	250 VAC; 1500 VAC przez 1 min	
Separacja galwaniczna między kanałami	Brak	

IN3D – trzykanałowy moduł wejść binarnych			
Liczba wejść	3		
Tryb pracy	Detekcja stanu Pomiar częstotliwości 0,1 12500 Hz Zliczanie impulsów (zakres 0 100 Hz)		
Rozdzielczość dla pomiaru częstotliwości	0,1 Hz		
Błąd dla pomiaru częstotliwości	< ±0,02% pełnego zakresu pomiarowego (typowo < ±0,005%)		
Dryft temperaturowy dla pomiaru częstotliwości	< ±0,002% /°C pełnego zakresu pomiarowego		
Maksymalne napięcie wejściowe	± 28 VDC		
Filtr drgań styków (funkcja debounce)	Wył. / 1 ms / 3 ms (wybierany programowo)		
Zasilanie przetworników z przyrządu	12 VDC ±15% / max 50 mA Zabezpieczone bezpiecznikiem termicznym		
Separacja galwaniczna od innych obwodów	250 VAC;1500 VAC przez 1 min		
Separacja galwaniczna między kanałami Brak			
Konfiguracja OC/styk			
Napięcie w stanie rozwarcia	12 V		
Prąd w stanie rozwarcia	12 mA		
Próg załączenia / wyłączenia	2,7 V / 2,4 V		
Konfiguracja wejście napięciowe			
Rezystancja wejściowa	>10 kΩ		
Próg załączania / wyłączania	2,7V / 2,4 V		
Napięcie w stanie rozwarcia	12V		
Konfiguracja Namur			
Stan wysokiej impedancji	0,4 1 mA		
Stan niskiej impedancji	2,2 6,5 mA		

IN6D – sześciokanałowy moduł wejść binarnych				
Liczba wejść	6			
Tryb pracy	 Stan Pomiar częstotliwości 0,1 1000 Hz Zliczanie impulsów (zakres częstotliwości 0 100 Hz) 			
Rozdzielczość dla pomiaru częstotliwości	0,1 Hz			
Błąd dla pomiaru częstotliwości	< ±0,01% pełnego zakresu pomiarowego (typowo < ±0,005%)			
Dryft temperaturowy dla pomiaru częstotliwości	< ±0,002% /°C pełnego zakresu pomiarowego			
Rezystancja wejściowa	1,2 kΩ ±10%			
Napięcie wejściowe pracy (poziom przełączania)	0 4 VDC / 5,5 34 VDC (3,6 mA) ⁽²⁾ (realizacja ch-ki wg PN-EN61131-2)			
Maksymalne napięcie wejściowe	-0,3 VDC / +36 VDC			
Filtr drgań styków (funkcja debounce)	Wył. / 1 ms / 3 ms (wybierany programowo)			
Zasilanie przetworników z przyrządu	24 VDC ±15% / max 50 mA Zabezpieczone bezpiecznikiem termicznym			
Separacja galwaniczna od innych obwodów	250 VAC; 1500 VAC przez 1 min			
Separacja galwaniczna między kanałami	anałami Brak			
⁽²⁾ W szczególnych przypadkach istnieje możliwość zmiany poziomu przełaczania za pomoca jumperów				

⁽²⁾W szczególnych przypadkach istnieje możliwość zmiany poziomu przełączania za pomocą jumperów umiejscowionych na module. Inne dostępne wartości poziomu przełączania: 0,3 mA, 0,9 mA, 3,0 mA.

2RS485(24V), 2RS485 – moduł dwóch portów RS485 (Modbus RTU Master)			
Liczba portów RS485	2		
Maksymalna ilość czytanych wielkości	25 (jeden lub oba porty łącznie)		
Sygnały wyprowadzone na łączówce	A(+), B(-), 2x G (masa)		
Maksymalne obciążenie linii	32 odbiorniki/nadajniki		
Protokół transmisji	Modbus RTU Master		
Prędkość transmisji	1.2, 2.4, 4.8, 9.6 ,19.2, 38.4, 57.6, 115.2 kbps		
Kontrola parzystości	Even, Odd, None		
Ramka	1 bit startu, 8 bitów danych, 1 bit stopu		
Separacja galwaniczna	250 VAC; 1500 VAC przez 1 min		
Maksymalna długość linii	1200 m		
Terminacja linii	Vcc-A(+)-B(-)-G: 390 Ω - 220 Ω - 390 Ω (aktywowana przełącznikiem DIP SW)		
Maksymalne napięcie różnicowe A(+), B(-)	-9 V +14 V		
Minimalny sygnał wyjściowy nadajnika	1,5 V (przy R∟= 54 Ω)		
Czułość odbiornika	200 mV / R _{IN} = 12 kΩ		
Minimalna impedancja linii transmisji danych	54 Ω		
Zabezpieczenie zwarciowe / termiczne	Tak / Tak		
Dodatkowe wyjście zasilające 24 VDC			
• moduł 2RS485(24V)	 3 łączówki 4-zaciskowe (+ +) 24 VDC ±15% / max 200 mA 		
moduł 2RS485	Brak		

1HRT – moduł jednego portu HART (4-20 mA)				
Protokół transmisji	• rev 4, rev 5, rev 6, rev 7			
	Primary Master lub Secondary Master			
Realizowane funkcje	Obsługa komend 0, 1, 3, 6, 9:			
	 Odczyt zmiennych PV, SV, TV, FV, DVC 			
	• Pobieranie adresu długiego (rev 5, rev 6, rev 7)			
	Zmiana adresu krótkiego			
	Testowy odczyt ramki ID			
Maksymalna liczba urządzeń	15			
Maksymalna liczba czytanych wielkości	25			
Tryb pracy multidrop	Tak, do 15 urządzeń (multidrop)			
Zasilanie pętli	24 VDC (max 60 mA)			
Odczyt analogowy linii 4-20mA	Nie			
Separacja galwaniczna od napięcia zasilania	250 VAC; 1500 VAC przez 1 min			
Rezystor wewnętrzny	250 Ω, domyślnie wyłączony ⁽³⁾			
⁽³⁾ Możliwość włączenia/wyłączenia rezystora w	menu ustawień I/O rejestratora. Rezystor jest			
automatycznie odłaczany podczas zaniku napiecia zasilania.				

OUT6RL – sześciokanałowy moduł wyjść przekaźnikowych			
Liczba wyjść	6		
Typ wyjść	Przekaźniki półprzewodnikowe (SSR)		
Maksymalne napięcie robocze / prąd roboczy	24 VAC / 0,5 A lub 36 VDC / 0,5 A		
Napięcie maksymalne dopuszczalne	42 VAC lub 60 VDC		
Maksymalny prąd szczytowy	1,5 A przez 1 ms		
Separacja galwaniczna od innych obwodów	250 VAC; 1500 VAC przez 1 min		
Separacja galwaniczna między kanałami	250 VAC; 1500 VAC przez 1 min		

Separacja galwaniczna między kanałami

OUT3 – trzykanałowy moduł wyjść analogowych			
Liczba wyjść (kanałów)	3		
Specyfikacja dla wy	jścia prądowego		
Zakres pomiarowy (wybierany programowo)	4 - 20 mA 0 - 20 mA 0 - 24 mA		
Typ wyjścia	Aktywne źródło prądowe (zasilane z przyrządu)		
Możliwość zasilania pętli prądowej z zewnętrznego źródła napięcia	Brak		
Rozdzielczość	12 bit / 0,006 mA		
Błąd podstawowy (R _L =350 Ω / T _a =+25 °C)	< ±0,15% (< ±0,036 mA) pełnego zakresu pomiarowego (FSR)		
Błąd całkowity (R _L =350 Ω / T _a = -40 +50 °C)	< ±0,3% (< ±0,072 mA) pełnego zakresu pomiarowego (FSR)		
Rezystancja obciążenia R∟	0 Ω 500 Ω		
Maksymalne napięcie wyjściowe (dla R _L = $\infty \Omega$)	21,5 V		
Specyfikacja dla wyjś	ścia napięciowego		
Zakres pomiarowy (wybierany programowo)	0 - 5 VDC 0 - 10 VDC		
Typ wyjścia	Źródło napięcia stałego		
Rozdzielczość	12 bit (1,25 mV dla 0 - 5 V) (2,5 mV dla 0 - 10 V)		
Błąd podstawowy (RL=1 k Ω / CL=200 pF / Ta=+25 °C)	< ±0,1% pełnego zakresu pomiarowego (FSR) (Typowo < ±0,05% FSR)		
Błąd całkowity (R∟=1 kΩ / C∟=200 pF / Ta= -40 +50 °C)	< ±0,3% pełnego zakresu pomiarowego (FSR)		
Minimalna rezystancja obciążenia R∟	1 kΩ		
Maksymalna pojemność obciążenia C _L	1 μF		
Zabezpieczenie przeciwzwarciowe	Tak		
Specyfikacja dla wyjścia prądowego i napięciowego			
Separacja galwaniczna od innych obwodów	250 VAC; 1500 VAC przez 1 min		

PSBATT – moduł do zasilania akumulatorowego ⁽⁴⁾			
Napięcie wejściowe 24 VDC IN	24 VDC / 2 2,5 A		
BATT1, BATT2 (pojemność)	NiMH 2x 9,6 V / 1000 6000 mAh (typowo 4600 mAh lub 2000 mAh)		
Czujnik temperatury BATT1, BATT2	2x NTC 10 kΩ		
Czas ładowania	ok, 12 h (pełne ładowanie)		

250 VAC; 1500 VAC przez 1 min

⁽⁴⁾W przyrządzie można zainstalować maksymalnie 1 moduł PSBATT. Od 1 kwietnia 2020 moduł PSBATT jest produkowany wyłącznie w wersji 1.2. Wersja 1.2 modułu nie jest kompatybilna wstecz. Instrukcja zawiera informacje dotyczące danych technicznych modułu w wersji 1.2. Szczegóły techniczne dotyczące modułu w wersji 1.0 oraz w wersji 1.1 dostępne są u Producenta. Należy używać wyłącznie dedykowanego zasilacza.

DL2

Typ czujnika	Zakres pomiaru	Dokładność
Pt100, Pt200, Pt500, Pt1000	-200 °C +850 °C	±0,5 °C (typ. ±0,3 °C)
(EN 60751+A2:1995)	-328 °F +1562 °F	±0,9 °F (typ. ±0,5 °F)
Ni100, Ni120, Ni1000	-60 °C +250 °C	±0,5 °C (typ. ±0,3 °C)
(DIN43760 /08-1985)	-76 °F +482 °F	±0,9 °F (typ. ±0,5 °F)
Cu50, Cu53, Cu100	-180 °C +200 °C	±0,5 °C (typ. ±0,3 °C)
(GOST6651-2009)	-292 °F +392 °F	±0,9 °F (typ. ±0,5 °F)
KTY81	-55 °C +150 °C	±0,5 °C
(NXP Rev05-25.04.2008)	-67 °F +302 °F	±0,9 °F
KTY83	-55 °C +175 °C	±0,5 °C
(NXP Rev06-4.04.2008)	-67 °F +347 °F	±0,9 °F
KTY84	-40 °C +300 °C	±0,8 °C
(NXP Rev06-8.05.2008)	-40 °F +572 °F	±1,5 °F
Rezystancja liniowa	0 4700 Ω (lub podzakres)	±0,5 Ω (typ. ±0,3 Ω)

Tabela termoelementów (TC)					
Typ czujnika	Typ czujnika Zakres pomiaru Dokładność				
J (Fe-CuNi) (EN60584-1:1995)	-210 °C +1200 °C (zakr. komp100 °C +300 °C) -346 °F +2192 °F (zakr. komp148° F +572 °F)	±1,0 °C (typ. ±0,5 °C) ±1,8 °F (typ. ±0,9 °F) (bez kompensacji)			
K (NiCr-NiAl) (EN60584-1:1995)	-270 °C +1372 °C (zakr. komp100 °C +300 °C) -454 °F +2501,6 °F (zakr. komp148 °F +572 °F)	±1,0 °C (typ. ±0,5 °C) ±1,8 °F (typ. ±0,9 °F) (bez kompensacji)			
N (NiCrSi-NiSi) (EN60584-1:1995)	-270 °C +1300 °C (zakr. komp100 °C +300 °C) -454 °F +2372 °F (zakr. komp148 °F +572 °F)	±2,0 °C (typ. ±1,0 °C) ±3,6 °F (typ. ±1,8 °F) (bez kompensacji)			
R (PtRh 13-Pt) (EN60584-1:1995)	-50 °C +1768 °C (zakr. komp50 °C +300 °C) -58 °F +3214,4 °F (zakr. komp58 °F +572 °F)	±2,0 °C (typ. ±1,0 °C) ±3,6 °F (typ. ±1,8 °F) (bez kompensacji)			
S (PtRh 10-Pt) (EN60584-1:1995)	-50 °C +1768 °C (zakr. komp50 °C +300 °C) -58 °F +3214,4 °F (zakr. komp58 °F +572 °F)	±2,0 °C (typ. ±1,0 °C) ±3,6 °F (typ. ±1,8 °F) (bez kompensacji)			
T (Cu-CuNi) (EN60584-1:1995)	-200 °C +400 °C (zakr. komp50 °C +300 °C) -328 °F +752 °F (zakr. komp58 °F +572 °F)	±1,0 °C (typ. ±0,5 °C) ±1,8 °F (typ. ±0,9 °F) (bez kompensacji)			
E (NiCr-CuNi) (EN60584-1:1995)	-270 °C +1000 °C (zakr. komp50 °C +300 °C) -454 °F +1832 °F (zakr. komp58 °F +572 °F)	±1,0 °C (typ. ±0,5 °C) ±1,8 °F (typ. ±0,9 °F) (bez kompensacji)			
B (PtRh30-PtRh6) (EN60584-1:1995)	+250 °C +1820 °C (bez kompensacji) +482 °F +3308 °F (bez kompensacji)	±2,0 °C (typ. ±1,0 °C) ±3,6 °F (typ. ±1,8 °F) (bez kompensacji)			
L (Fe-CuNi) (DIN43710)	-200 °C +900 °C (zakr. komp50 °C +300 °C) -328 °F +1652 °F (zakr. komp58 °F +572 °F)	±1,0 °C (typ. ±0,5 °C) ±1,8 °F (typ. ±0,9 °F) (bez kompensacji)			

U (Cu-CuNi)	-200 °C +600 °C (zakr. komp50 °C +300 °C)	±1.0 °C (typ. ±0,5 °C)
(DIN43710)	-328 °F +1112 °F	±1,8 °F (typ. ±0,9 °F)
	(zakr. komp58 °F +572 °F)	(bez kompensacji)
Napięcie liniowe	-140 +140 mV (lub podzakres)	<0,2% pełnego zakresu

10 PODMIOT WPROWADZAJĄCY NA RYNEK UE

Producent:

METRONIC AKP sp. z o.o. sp. k. 31-426 Kraków, ul. Żmujdzka 3 Tel.: (+48) 12 312 16 80 www.metronic.pl

Sprzedawca:

11 OKNA UŻYTKOWNIKA

11.1 Informacje o urządzeniu

Informacje o urządzeniu dostępne są po wybraniu ikony 🔽 z rozwijanego paska menu. W oknie tym są wyświetlane wszystkie podstawowe informacje dotyczące urządzenia. Wyświetlane są dane dotyczące: modelu urządzenia, ID, numeru seryjnego, firmware, adresu IP, parametry konfiguracji COM (RS485) oraz adres Modbus.

m 🖁	Informacje o U	rządzeniu		21-02-18 12:29
	DL2			
ID przyrządu Numer seryjny Firmware	1 0 1.2.0.0			
Adres IP	192.168.2.35		Port ModbusTC	P 502
COM (RS485)	19200bps (NONE)			
Adres ModbusRTU	1			
		Hardware	Wi	ęcej

Rys. 11.1 Przykładowy wygląd okna Informacje o Urządzeniu.

Ponadto w oknie tym znajdują się dwa przyciski funkcyjne:

Hardware

Otwiera okno zawierające informacje o aktualnie zainstalowanych modułach pomiarowych (znak "-----" oraz czerwony kolor paska oznaczają, że na slocie nie jest zainstalowany moduł lub jest zainstalowany moduł PSBATT w wersji 1.0 lub w wersji 1.1).

Więcej

Otwiera okno zawierające dodatkowe informacje na temat urządzenia tj. adres producenta czy numer telefonu do działu pomocy technicznej. Ponadto, dla użytkownika zalogowanego jako Administrator, istnieje możliwość edytowania pola i wprowadzenia dodatkowego opisu lub informacji.

m	-	Informacje o Urządzeniu			21-02-18 12:29
		DL2			
		Hardware	Э		\mathbf{X}
ID pr	SLOT A	IN6I(2	4V)	1.10	
Nume Firmv	SLOT B	IN6R	TD	1.10	
Adres I	0	192.168.2.35	Port	ModbusTCP	502
COM (R	S485)	19200bps (NONE)			
Adres M	1odbusRTU	1			
			Hardware	Wię	cej

Rys 11.2 Hardware – okno informujące o konfiguracji Hardware.

11.2 Tabele Wyników

Okno Tabele Wyników wyświetlane jest po naciśnięciu ikony **E** z rozwijanego paska menu.

Okno zbudowane jest (w zależności od ilości zdefiniowanych tabel) z od 1 do 6 niezależnych zakładek. W każdej z nich znajduje się tabela złożona z 15 pól o układzie 3x5. Każde pole (w zależności od ustawień) umożliwia wyświetlanie:

- opisu,
- wartości bieżącej,
- wartości liczników,
- maksimum lub minimum,
- jednostki dla ustawionego kanału pomiarowego.

Naciśnięcie odpowiedniego pola tabeli powoduje przeniesienie do ekranu – <u>Okno</u> pojedynczego wyniku dla wybranego kanału.

m 🖁	Tabele Wyników	21-02-18 REC 12:39					
Wartości Poziom wody Filtry							
Temperatura otoczenia	Temperatura magazyn	Poziom wody zbiornik 4					
21.12°C	12.12 °C	28.9040 m					
llość wody wtrysk.	Poziom wody zbiornik 1	4-20mA					
5.64 kg/s	24.3611 m	18.45mA					
Ciśnienie pary	Poziom wody zbiornik 2	Filtr 2s (IN1)					
13.24 MPa	26.1503 m	16.12mA					
Wilg. powietrza Hala 1	Poziom wody zbiornik 3	Filtr 5s (IN1)					
43.87%	16.1435 m	10.88 mA					
Wilg. powietrza magazyn	∑ wody zbiorniki 1-3	Filtr 60s (IN1)					
14.73%	66.6549 m	6.53 mA					

Rys. 11.3 Przykładowy wygląd okna Tabele Wyników.

11.3 Trendy

Okno Trendy wyświetlane jest po naciśnięciu ikony Kara z rozwijanego paska menu.

Okno zbudowane jest (w zależności od ilości zdefiniowanych trendów) z od 1 do 6 niezależnych zakładek. Każda zakładka zbudowana jest z pola trendu umożliwiającego wyświetlanie maksymalnie 6 linii oraz z pola legendy zawierającego informacje o wyświetlanych wartościach (opis kanału, aktualną wartość oraz jednostkę). W celu ułatwienia identyfikacji, każdemu z opisów przypisany jest inny kolor, odpowiadający kolorowi linii na wykresie.

Użytkownik ma możliwość wyłączenia/włączania legendy poprzez naciśnięcie pola wykresu. Podczas przełączania pomiędzy poszczególnymi zakładkami nie następuje zmiana trybu wyświetlania legendy. W oknie Trendy wyświetlane są wartości z ostatniej godziny (przesuwanie przy pomocy paska pod wykresem). Trendy wyświetlają 400 s (wyłączona legenda) lub 260 s (włączona legenda).

Rys. 11.4 Przykładowy wygląd okna Trendy.

Opisy pełnią dodatkowo rolę przycisków funkcyjnych. Naciśnięcie wybranego opisu powoduje włączenie odpowiedniego **Okna pojedynczego wyniku**.

Rys. 11.5 Przejście z okna Trendy do Okna pojedynczego wyniku.

11.4 Okno pojedynczego wyniku

Okno wyświetla pojedynczy kanał pomiarowy (tylko dla włączonych kanałów).

Okno umożliwia wyświetlenie informacji dotyczących wybranego kanału:

- opisu kanału,
- aktualnej wartości,
- jednostki,
- wartości licznika 1 i 2 (jeśli są aktywne liczniki),
- jednostki licznika 1 i 2 (jeśli są aktywne liczniki),
- wartości min i max (na podstawie wartości bieżącej),
- trendu wartości z ostatnich 400 s,
- trendu wartości z ostatniej godziny (po maksymalizacji wykresu), przesuwanie przy użyciu paska pod wykresem.

W górnej części ekranu znajduje się opis kanału wprowadzony przez użytkownika. Poniżej wyświetlana jest aktualna wartość kanału wraz z wprowadzoną przez użytkownika jednostką. Dolna część ekranu jest dodatkowo podzielona na dwie części.

W lewej części wyświetlane są wartości liczników oraz wartość maksymalna i minimalna. Naciśnięcie w pole wyników pomocniczych (Σ 1, Σ 2, minimum i maksimum) umożliwia wyzerowanie wartości liczników oznaczonych jako kasowalne oraz zresetowanie wartości minimalnej i maksymalnej. Po naciśnięciu, zostanie wyświetlone okno kasowania parametrów (tylko dla zalogowanego użytkownika). Możliwe jest kasowanie wartości pomocniczych dla pojedynczego kanału albo wszystkich aktywnych kanałów.

Prawa część ekranu zawiera pole trendu z ostatnich 400 s. Naciśnięcie pola trendu powiększa go do pełnego ekranu. Ponowne kliknięcie powoduje powrót do poprzedniego widoku. Po maksymalizacji wykresu wyświetlana jest linia trendu wartości kanału z ostatniej godziny (przesuwanie przy pomocy paska pod wykresem).

Rys. 11.6 Naciśnięcie obszaru trendu w oknie pojedynczego wyniku powoduje powiększenie wykresu na cały ekran.

Za pomocą strzałek z rozwijanego paska menu możliwa jest zmiana wyświetlanego kanału. Dłuższe naciśnięcie przycisku powoduje przełączanie między kolejnymi kanałami.

11.5 Archiwum

Okno Archiwum wyświetlane jest po naciśnięciu ikony 📕 z rozwijanego paska menu.

Okno jest podzielone na dwie części. W górnej części ekranu znajduje się pole zawierające dane dotyczące parametrów archiwum: numer i typ bieżącego archiwum, częstość zapisu archiwum bieżącego (aktywna – zaznaczona kolorem czarnym; nieaktywna – kolorem szarym) oraz częstość zapisu archiwum liczników. Dodatkowo, w oknie Archiwum wyświetlany jest pasek informujący o procentowym wykorzystaniu pamięci wewnętrznej urządzenia.

W dolnej części ekranu znajdują się dwie zakładki odpowiadające archiwum wartości bieżących i licznikom. Kolor zielony oznacza aktywną archiwizację, kolor szary nieaktywną archiwizację. W zakładce *Wartości procesowe* jeden kwadrat odpowiada jednemu kanałowi (wartości bieżącej). W zakładce *Liczniki* górny prostokąt odpowiada licznikowi pierwszemu, dolny odpowiada licznikowi drugiemu.

DI 2

W oknie tym zlokalizowane są również przyciski funkcyjne sterujące procesem archiwizacji (STOP/START oraz Nowe Archiwum), dostępne po zalogowaniu na poziom Użytkownika lub wyższy. Szczegółowe informacje w rozdziale <u>ARCHIWUM</u>.

Rys. 11.7 Przykładowy wygląd okna Archiwum.

11.6 Menu Główne

Okno Menu Główne wyświetlane jest po naciśnięciu ikony 🖼 z rozwijanego paska menu.

Okno zbudowane jest z ikon funkcyjnych wraz z opisem. Naciśnięcie ikony powoduje wyświetlenie odpowiedniego podokna. Z poziomu okna Menu Głównego możliwe jest przejście do okien ustawień: Logowanie, Ogólne, I/O (wejścia/wyjścia pomiarowe), Komunikacja, Kanały, Ekrany, Archiwum, USB. Szczegółowe informacje w rozdziale <u>PROGRAMOWANIE USTAWIEŃ</u>.

Przełączenie do poszczególnych okien ustawień jest możliwe jedynie dla zalogowanego użytkownika.

Rys. 11.8 Okno Menu Główne.

Za pomocą Menu głównego wprowadzane są wszelkie zmiany w ustawieniach urządzenia. Po wprowadzaniu zmian i ich zatwierdzeniu, należy nacisnąć dowolną ikonę paska menu (inną niż ikona Menu Głównego). Wyświetlony zostanie wówczas komunikat z prośbą o potwierdzenie chęci wprowadzenia zmian. Po zatwierdzeniu, w niektórych przypadkach, urządzenie wyłączy się i uruchomi ponownie z nowymi ustawieniami.

11.7 Alarmy

Okno Alarmy wyświetlane jest po naciśnięciu ikony 🏝 z rozwijanego paska menu lub

po naciśnięciu ikony 🚆 z paska tytułowego.

Okno wyświetla aktualny stan alarmów wszystkich kanałów. Do każdego kanału przyporządkowany jest jeden prostokąt podzielony na dwie części, odpowiadające kolejno pierwszemu i drugiemu alarmowi.

Rozpoznanie stanu alarmów jest możliwe dzięki odpowiednim kolorom:

- alarm wyłączony
- alarm włączony, nieaktywny

- alarm włączony, aktywny

Jeśli kolor alarmu nie jest zdeklarowany (wybrany z listy w oknie ustawień Kanały jako Wyłączony), w przypadku wystąpienia alarmu wyświetli się kolor niebieski.

Jeśli wyświetlany kolor (czerwony, zielony, pomarańczowy, niebieski) pulsuje, to alarm jest niepotwierdzony. Stałe wyświetlanie koloru oznacza alarm potwierdzony.

W zależności od ustawień urządzenie może wydawać sygnał dźwiękowy dla nowych alarmów.

Rys. 11.9 Przykładowy wygląd okna Alarmy.

Potwierdzenie alarmów odbywa się przez naciśnięcie przycisku (wymagany poziom dostępu Użytkownik lub wyższy).

Potwierdzenie alarmów

12 PROGRAMOWANIE USTAWIEŃ

Aby zaakceptować zmiany wprowadzone w ustawieniach urządzenia, należy najpierw potwierdzić je za pomocą przycisku znajdującego się w prawej, dolnej części ekranu, a następnie nacisnąć dowolną ikonę paska menu (inną niż ikona Menu Głównego). Wyświetlony zostanie wówczas komunikat z prośbą o potwierdzenie chęci wprowadzenia zmian. Po zatwierdzeniu, w niektórych przypadkach, urządzenie wyłączy się i uruchomi ponownie z nowymi ustawieniami.

Naciśniecie przycisku **EX** spowoduje zamknięcie danego okna przy jednoczesnym anulowaniu wszelkich wprowadzonych zmian.

Zmiana ustawień możliwa jest w oknie Menu główne (przycisk 🦉 na rozwijalnym pasku menu). Naciśniecie na ikony przenosi użytkownika do okien ustawień:

- Logowanie.
 - Ustawienia ogólne.
- Ustawienia wejść i wyjść (I/O),
- Ustawienia komunikacji,
 - Ustawienia kanałów,
 - Ustawienia ekranów,
 - Ustawienia archiwum,
 - USB.
- 12.1 Ustawienia ogólne

		Ogólne		21-02-18 12:11
Ogólne	Wyświetlacz	Data i Czas	Serwis	
Jasność		100%		P
Jasność wygaszenia O% 20%		Kolor ()	tła Biały Czarny	Administ
Wygaszenie po czasie		5 min		rato
			×	Ÿ

Rys. 12.1 Przykładowy wygląd okna ustawień – Ogólne.

12.1.1 Ogólne

Język: PL (POLSKI) (EN (ENGLISH), DE (DEUTSCH), ES (ESPAÑOL), FR (FRANÇAIS), (ITALIANO), PL (POLSKI), IT PT (PORTUGUÊS))^[1]

Opis przyrządu: [tekst]^[2]

ID przyrządu: 1^[3]

Dźwięk przycisków: Zaznaczone (Odznaczone, Zaznaczone)^[4]

Dźwięk dla nowych alarmów: Zaznaczone (Odznaczone, Zaznaczone)^[5]

Zmiana na czas letni: Zaznaczone (Odznaczone, Zaznaczone)^[6]

- [1]: Wybór z rozwijalnej listy.
- [2]: Umożliwia wprowadzenie dowolnego opisu (nazwy) przyrządu.
- [3]: ID przyrządu, umożliwia nadanie urządzeniu indywidualnego numeru ID. Numer ID jest również zapisywany w nazwie plików archiwum.

Podczas korzystania z większej liczby urządzeń zaleca się przypisanie każdemu indywidualnego numeru ID. Umożliwi to rozpoznanie źródła archiwum według numeru ID w nazwie pliku.

- [4]: Włączenie/wyłączenie dźwięków przycisków.
- [5]: Włączenie/wyłączenie dźwięku dla nowych alarmów.
- [6]: Włączenie/wyłączenie automatycznej zmiany czasu z letniego na zimowy i odwrotnie.

12.1.2 Wyświetlacz

Jasność^[1]

Jasność wygaszenia: 20% (0%, 20%)^[2]

Kolor tła (biały, czarny)[3]

Wygaszenie po czasie^[4]

- [1]: Regulacja stopnia podświetlenia ekranu w czasie pracy w zakresie od 21 do 100% (ustawienie za pomocą suwaka).
- [2]: Wybór stopnia wygaszenia ekranu po ustalonym czasie bezczynności. Użytkownik ma do wyboru dwa poziomy wygaszenia: 0% (powodujące całkowite ściemnienie ekranu) oraz 20%.
- [3]: Ustawienie koloru tła ekranu, do wyboru dwa kolory: biały oraz czarny.
- [4]: Regulacja czasu bezczynności po upływie którego ekran zostanie przyciemniony (ustawienie za pomocą suwaka); dla *0 min* ekran nie zostanie wygaszony.

12.1.3 Data i czas

Pole czasu

Umożliwia ustawienie czasu w formacie: godziny/minuty/sekundy. Zmiany dokonywane są za pomocą trzech suwaków. Aktualnie wybrane parametry zaznaczone są na czerwono. Po zmianie ustawień należy potwierdzić wybór klikając przycisk **USTAW** (znajdujący się pod polem czasu – pod suwakami).

Pole daty

Umożliwia ustawienie daty w formacie: dzień/miesiąc/rok. Ustawianie daty odbywa się przy pomocy "karty kalendarza". Za pomocą strzałek znajdujących się w górnej części pola należy ustawić odpowiedni miesiąc i rok, a następnie w polu poniżej dzień. Nowa data jest wyświetlana przy pomocy niebieskiego prostokąta, aktualna przy pomocy niebieskiej ramki. Po wprowadzeniu danych należy zatwierdzić wybór klikając w przycisk **USTAW** (znajdujący się pod polem daty – kartą kalendarza).

Po zatwierdzeniu zmian, data zostanie zmieniona natychmiast, bez konieczności wcześniejszego restartu urządzenia.

12.1.4 Serwis

Zakładka Serwis widoczna jest tylko dla Administratora i umożliwia dostęp do następujących funkcji:

- **Reset** powoduje ponowne uruchomienie urządzenia.
- **Przywróć ustawienia fabryczne** użycie tej funkcji spowoduje usunięcie wprowadzonych ustawień. Dotychczas utworzone pliki archiwum nie zostaną skasowane. Więcej informacji w rozdziale <u>Ustawienia fabryczne</u>.
- Numer seryjny i adres MAC umożliwia wyświetlenie numeru seryjnego i adresu MAC,
- Konfiguracja kart HART umożliwia skonfigurowanie zainstalowanych kart HART. Po wyborze modułu z listy i naciśnięciu przycisku Konfiguruj kartę otwierane jest okno konfiguracji czujników podłączonych do karty.
 - UWAGA! W oknie znajduje się pole Rezystor 250 Ω służące do serwisowego ustawienia stanu rezystora (włączony/wyłączony). Po otwarciu okna stan rezystora jest zgodny z zapisanymi (aktualnie używanymi) ustawieniami w oknie I/O. Włączenie rezystora może okazać się niezbędne do zasilenia czujników. Przed włączeniem rezystora należy wziąć pod uwagę zastosowane podłączenie elektryczne. Po zamknięciu okna stan rezystora zostanie przywrócony do zapisanych ustawień.

W oknie należy podać adres krótki urządzenia (0-15) i nacisnąć przycisk *Pobierz adres długi*. Adres długi jest niezbędny w przypadku odczytu wartości zmiennych z urządzeń w rev 5, w rev 6 oraz w rev 7. Poniżej wyświetlana jest testowa ramka odczytana dla zmiennej PV. W oknie możliwa jest zmiana adresu krótkiego urządzenia: należy podać adres krótki i połączyć się z urządzeniem (*Pobierz adres długi*), następnie w polu *Zmień adres krótki na* należy podać liczbę z zakresu 0-15 i nacisnąć przycisk *Zmień*.

12.2 Ustawienia wejść i wyjść (I/O)

Okno umożliwia konfigurację podłączonych kart pomiarowych. Z rozwijalnej listy (w lewym górnym rogu) należy wybrać numer slotu karty pomiarowej.

Po wybraniu pozycji zostanie wyświetlony typ zainstalowanej karty (w środkowej części okna, nad zakładkami). Użytkownik ma możliwość zdefiniowania trybu pracy dla każdego wejścia/wyjścia (niezależnie) za pomocą sześciu zakładek, każda odpowiada kolejnemu wejściu/wyjściu.

W przypadku braku zainstalowanej karty (modułu) lub zainstalowanego modułu PSBATT w wersji 1.0 lub w wersji 1.1, zostanie wyświetlony symbol "------".

		I/O			21-02-18 12:11
М	▼ T	yp Karty MAIN	I		
RL 1	RL 2	RL 3	RL 4	OUT (I)	
Tryb pracy	4-20mA	•	•		≥
Źródło	Kanał 1	•	-		dmi
	0.0000	$\rightarrow 0 \text{ mA}$	1.0000	$\rightarrow 20 \text{ mA}$	nist
Wartość awaryjna	Stała	•	0.0000 mA]	rato
			\sim	×	

Rys. 12.2 Przykładowy wygląd okna ustawień Wejść i Wyjść - I/O.

12.2.1 Moduł M (MAIN)

Zakładki RL1-RL4

Tryb pracy: Wyłączony (Wyłączony, Normalnie otwarte, Normalnie zamknięte, Pulsacja)^[1]

[1]: Wybór trybu pracy przekaźników: *Wyłączony*, *Normalnie otwarty*, *Normalnie zamknięty* lub *Pulsacja*.

UWAGA! Niezależnie od wybranego *Trybu pracy*, po wyłączeniu urządzenia oraz podczas uruchamiania, wyjścia przekaźnikowe pozostają otwarte.

Zakładka OUT (I)

Tryb pracy: Wyłączony (Wyłączony, 4-20mA)^[1]

[1]: Wybór trybu pracy wyjścia: jako *Wyłączony* lub jako retransmisja wartości wybranego kanału w postaci pętli prądowej 4-20mA.

Zakres 4-20mA może być ustawiony jako podzakres retransmitowanego zakresu kanału poprzez wprowadzenie wartości odpowiadających kolejno 4 mA oraz 20 mA.

Źródło: Kanał 1 (Kanał 1, .., 30)^[2]

Wartość awaryjna: Wyłączona (Wyłączona, Stała)^[3]

- [2]: Wybór jednego kanału (wybór dowolnego kanału od 1 do 30), którego wartość zostanie poddana retransmisji w postaci pętli prądowej 4-20mA.
- [3]: Ustawienie wartości awaryjnej.

12.2.2 Opcje programowania dla poszczególnych modułów

• IN6I / IN6I(24V)

Tryb pracy: Wyłączony (Wyłączony, 0-20mA, 4-20mA)^[1],

Poprawka: [wartość] mA^[2]

- [1]: Umożliwia ustawienie zakresu sygnału pętli prądowej na 0-20 mA lub 4-20 mA.
- [2]: Umożliwia dodanie wartości korekcji (przesunięcia) do zmierzonej wartości prądu.

Pozostałe parametry karty ustawiane są w zakładce kanały.

Wartości prądu w mA zostaje przypisana wartość fizyczna (charakterystyka liniowa lub użytkownika)

• IN6T

Tryb pracy: Wyłączony (Wyłączony, 2 przewody, 3 przewody, 4 przewody, TC)^[1] **Poprawka:** [wartość] Ω lub [wartość] mV^[2] **Kompensacja: Wyłączona** (Wyłączona, Stała, Kanał 1, ...,100)^[3]

- [1]: Czujniki RTD mogą być podłączone w konfiguracji czteroprzewodowej lub trójprzewodowej (z automatyczną kompensacją rezystancji przewodów podłączeniowych) lub w konfiguracji dwuprzewodowej (bez kompensacji).
- [2]: Umożliwia dodanie wartości korekcji (przesunięcia) do zmierzonej wartości.
- [3]: Sposób kompensacji spoiny odniesienia termoelementu (tzw. kompensacja zimnych końców). Źródłem kompensacji może być inny kanał pomiarowy. W szczególności do kompensacji może być wybrana wartość stała, ale taki pomiar obarczony jest dużym błędem. Typowo wybiera się do kompensacji czujnik Pt100 podłączony na ostatnim wejściu pomiarowym lub temperaturę mierzoną przez czujnik wewnętrzny. Podczas programowania ustawień kompensacji szczególną uwagę należy zwrócić na zachowanie stosowanej w pomiarze jednostki (°C lub °F).

Pozostałe parametry karty ustawiane są w zakładce kanały.

Wartości oporności w Ω zostaje przypisany wybrany czujnik oporowy (np. Pt100) lub wartość fizyczna (charakterystyka liniowa lub użytkownika).

• IN6V

Tryb pracy: Wyłączony (Wyłączony, -10-+10V, 0-10V)^[1]

Poprawka: [wartość] V^[2]

- [1]: Tryb pracy zależy od rodzaju podłączonych przetworników.
- [2]: Umożliwia dodanie wartości korekcji (przesunięcia) do zmierzonej wartości napięcia.

Pozostałe parametry karty ustawiane są w zakładce kanały. Wartości napięcia w V zostaje przypisana wartość fizyczna (charakterystyka liniowa lub użytkownika).

• IN6

Tryb pracy: Wyłączony (Wyłączony, RTD 2 przewody, RTD 3 przewody, RTD 4 przewody, TC, 0-20mA, 4-20mA, -10-+10V, 0-10V)^[1]

Poprawka: [wartość]^[2]

Kompensacja: Wyłączona (Wyłączona, Stała, Kanał 1, ..,100)^[3]

- [1]: Tryb pracy zależy od rodzaju podłączonego czujnika pomiarowego.
- [2]: Umożliwia dodanie wartości korekcji (przesunięcia) do zmierzonej wartości.
- [3]: Sposób kompensacji spoiny odniesienia termoelementu (tzw. kompensacja zimnych końców). Źródłem kompensacji może być inny kanał pomiarowy. W szczególności do kompensacji może być wybrana wartość stała, ale taki pomiar obarczony jest dużym błędem. Typowo wybiera się do kompensacji czujnik Pt100 podłączony na ostatnim wejściu pomiarowym lub temperaturę mierzoną przez czujnik wewnętrzny. Podczas

programowania ustawień kompensacji szczególną uwagę należy zwrócić na zachowanie stosowanej w pomiarze jednostki (°C lub °F).

Pozostałe parametry karty ustawiane są w zakładce kanały.

• IN4SG

Ogólne: Filtr uśredniający (Wyłączony, Włączony)^[1], Tryb TARA (Niezależne, Suma logiczna)^[2],

- Kanał: Tryb pracy (wyłączony, włączony)^[3], Poprawka ([mV])^[4]
- [1]: średnia krocząca z ostatnich 10 wyników,
- [2]: zerowanie kanałów niezależne TR1-kanał 1, TR2-kanał 2, itd., zerowanie wszystkich kanałów dowolnym wejście TR1 - TR4,
- [3]: włączenie określonego kanału 1, 2, 3, 4,
- [4]: korekta zmierzonej wartości z czujnika,

Pozostałe parametry karty ustawiane są w zakładce kanały.

Karta ma cztery fizyczne kanały pomiarowe do podłączenia czujników tensometrycznych. Dla użytkownika dostępnych jest sześć kanałów. Kanał piąty jest sumą aktywnych kanałów pomiarowych. Kanał szósty wskazuje stan wejścia tara i ma charakter serwisowy.

Mnożąc czułość czujnika tensometrycznego [mV/V] przez napięcie zasilania karty 5V otrzymujemy napięcie w [mV] odpowiadające nośności czujnika [kG] [kN]

• IN6D

Tryb pracy: Wyłączony (Wyłączony, Stan, Częstotliwość, Impulsy)^[1]

Filtr drgań: Wyłączony (Wyłączony, 1ms, 3ms)^[2]

- [1]: W zależności od konfiguracji modułu, wejścia binarne mogą pracować w trybie wykrywania stanu, zliczania impulsów lub pomiaru częstotliwości.
- [2]: Dla sygnałów niskiej częstotliwości, a w szczególności sygnałów pochodzących ze styku mechanicznego istnieje możliwość włączenia dodatkowego filtru dolnoprzepustowego, którego stałą czasową można wybrać jako 1 ms lub 3 ms. Pozostałe parametry karty ustawiane są w zakładce kanały.

Wartości częstotliwości w Hz zostaje przypisana wartość fizyczna (charakterystyka liniowa lub użytkownika).

• 2RS485(24V) / 2RS485

Zakładka RS485 COM

Zakładka umożliwia dokonanie ustawień związanych z komunikacją urządzenia po magistrali cyfrowej RS485 z innymi urządzeniami.

Prędkość: 19200 (Wyłączony, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200)^[1]

Parzystość: NONE (ODD, EVEN, NONE)^[2]

Bity stopu: 1b (1b, 2b)

Opóźnienie: [wartość] ms^[3]

- [1]: Prędkość transmisji powinna być ustawiona na najwyższą możliwą wartość. W przypadku dużych odległości lub wysokiego poziomu zakłóceń może być konieczne zmniejszenie prędkości. Niska prędkość transmisji wydłuża czas odczytu.
- [2]: Ustawienie kontroli Parzystości.
- [3]: Opóźnienie (timeout) oczekiwania na odpowiedź (*Response*).

Zakładka Rejestry

IO^[1]

Port: Wyłączony (Wyłączony, 1, 2)^[2]

Urządzenie: [adres urządzenia]^[3]

Adres: [wartość]^[4]

Typ: uint(16bit) (uint (16bit), int (16bit), uint (32bit), uint (32bit) sw, int (32bit), int (32bit) sw, float (32bit), float (32bit) sw, int (64bit), double (64bit))^[5]

- [1]: Numer kanału pomiarowego modułu. Każdy z modułów zapewnia 25 kanałów pomiarowych, których numeracja pozwala na łatwe przypisanie odpowiedniego pomiaru do danego kanału wyświetlanego.
- [2]: Numer wykorzystywanego portu. Każdy moduł posiada dwa aktywne porty.
- [3]: Adres czujnika lub urządzenia (urządzenie *slave*), z którego mają być odczytywane wyniki pomiarów.
- [4]: Należy ustawić numer rejestru, z którego będą odczytywane dane. Dostępny format 3xxxx / 3xxxxx lub 4xxxx / 4xxxxx, gdzie: 3 – Input register, 4 – Holding register, xxxx / xxxxx – czterocyfrowy / pięciocyfrowy adres. Wartość należy podać w systemie dziesiętnym. Więcej informacji w rozdziale <u>PROTOKÓŁ TRANSMISJI MODBUS RTU</u> / MODBUS TCP.
 - **UWAGA!** Karta umożliwia grupowanie rejestrów, co przyspiesza transmisję danych. Jeśli dla jednego urządzenia zachowano kolejność adresów dla kolejnych rejestrów oraz tak dobrano wartość w polu Typ^[5], że suma wartości Adresu i Typu są kolejnymi liczbami, to podczas jednego zapytania można uzyskać wartość dla kilku kolejnych rejestrów.
- [5]: Wybór z rozwijalnej listy jednego z 10 dostępnych formatów, gdzie: uint liczba całkowita bez znaku (unsigned integer), int liczba całkowita ze znakiem (signed integer), float liczba zmiennoprzecinkowa pojedynczej precyzji (single precision floating point), double liczba zmiennoprzecinkowa podwójnej precyzji (double precision floating point), sw zamiana kolejności rejestrów (swapped format). Więcej informacji w podrozdziale Typy danych. Należy wybrać format zgodny ze specyfikacją czytanego czujnika lub urządzenia.

Pozostałe parametry karty ustawiane są w zakładce kanały.

• 1HRT

Zakładka Ogólne

Zakładka umożliwia dokonanie podstawowych ustawień związanych z komunikacją rejestratora z innymi urządzeniami w standardzie HART.

Master: Primary (Primary, Secondary)^[1]

Rezystor 250 Ω: Wyłączony (Wyłączony, Włączony)^[2]

Preambuła: [wartość] B^[3]

- [1]: Urządzenie może być skonfigurowane jako Primary Master lub jako Secondary Master.
- [2]: Rezystor wewnętrzny 250 Ω domyślnie jest *Wyłączony*. Rezystor jest włączany przy pomocy ustawienia w zakładce *Ogólne*. Rezystor wewnętrzny jest automatycznie odłączany w przypadku zaniku zasilania urządzenia. Jeśli występuje potrzeba zachowania prądu pętli w przypadku zaniku napięcia zasilania, to należy stosować rezystor zewnętrzny R250 Ω.
- [3]: Należy podać ilość bajtów preambuły (domyślnie 5 B).

Zakładka Urządzenia

Zakładka umożliwia zdefiniowanie urządzeń podłączonych do rejestratora. W przypadku urządzeń w rev 5, rev 6 i rev 7 konieczna jest znajomość adresu długiego urządzenia (możliwość pobrania adresu długiego w oknie Ogólne, w zakładce <u>Serwis</u>).

Tryb: Wyłączony (Włączony, Wyłączony)^[1]

Adres: [adres urządzenia]^[2]

- [1]: Dla podłączonego urządzenia należy ustawić tryb *Włączony*. Jeśli czujnik lub urządzenie połączone z rejestratorem zostanie odłączone, zaleca się wyłączenie urządzenia (zmiana w ustawieniach <u>Kanałów</u> oraz w zakładce *Zmienne* nie jest wymagana); po ponownym podłączeniu czujnika należy włączyć urządzenie.
- [2]: Adres czujnika lub urządzenia, z którego mają być odczytywane wyniki pomiarów. Dla urządzenia w rev 4 należy podać adres krótki (w zakresie 0-15 DEC), dla urządzenia w rev 5, w rev 6 lub w rev 7 należy podać adres długi urządzenia (HEX).

Zakładka Zmienne

Zakładka umożliwia zdefiniowanie zmiennych odczytywanych przez rejestrator.

#^[1]

Urządzenie: Wyłączony (Wyłączony, wybór z listy dodanych urządzeń)^[2]

Typ: PV (PV, SV, TV, FV, DVC)^[3]

Kod: -- (--, wartość)^[4]

Polecenie: 01 (01, 03, 09)^[5]

Status: Włączony (Włączony, Wyłączony)[6]

- [1]: Numer kanału pomiarowego modułu. Moduł zapewnia 25 kanałów pomiarowych, których numeracja pozwala na łatwe przypisanie odpowiedniego pomiaru do danego kanału wyświetlanego.
- [2]: Wybór z listy dodanych urządzeń (konfiguracja w zakładce *Urządzenia*). Istnieje możliwość przypisania do zmiennej urządzenia w trybie *Wyłączony.*
- [3]: Typ odczytywanej zmiennej.
- [4]: Dla zmiennej DVC należy podać kod odczytywanej zmiennej.
- [5]: Polecenie używane do odczytu zmiennej. Dla zmiennej PV możliwość wyboru polecenia 01 oraz 03. Zmienne SV, TV oraz FV mają zdefiniowane polecenie 03, zmienna DVC ma zdefiniowane polecenie 09.

Uwaga

Karta umożliwia grupowanie rejestrów, co przyspiesza transmisję danych. Jeśli dla kilku zmiennych odczytywanych z jednego urządzenia wybrano komendę 03, to podczas jednego zapytania można uzyskać wartość dla zmiennych PV, TV, SV oraz FV.

[6]: Włączenie lub wyłączenie analizy statusu w odczytywanej ramce HART. Status Włączony spowoduje wyświetlenie wartości zmiennej w przypadku poprawnego statusu HART oraz wyświetlenie błędu --ERR-- w przypadku w przypadku błędnego statusu HART (wartość zmiennej nie jest wyświetlana). Status Wyłączony spowoduje wyświetlanie odczytanej wartości zmiennej również w przypadku błędnego statusu przesłanego w ramce HART (informacja o błędnym statusie jest ignorowana). Dla zmiennej DVC nie ma możliwości włączenia analizy statusu. Szczegółowy opis statusów awarii w rozdziale <u>Symbole awarii dla modułu 1HRT</u>.

Pozostałe parametry karty ustawiane są w zakładce kanały.

• OUT6RL

Tryb pracy: Wyłączony (Wyłączony, Normalnie otwarte, Normalnie zamknięte, Pulsacja)^[1]

- [1]: W trybie pracy Normalnie otwarte zamknięcie obwodu przekaźnika następuje w momencie zgłoszenia zdarzenia (np. przekroczenie progu alarmowo-sterującego). W trybie pracy Normalnie zamknięte – obwód przekaźnika jest zamknięty w spoczynku, a zostaje otwarty z chwilą zgłoszenia. Pulsacja – w chwili zgłoszenia obwód przekaźnika jest cyklicznie zamykany i otwierany z częstotliwością ok. 1 Hz (np. podłączony sygnalizator świetlny pulsuje – zgłoszenie alarmu). Po potwierdzeniu przez użytkownika obwód przekaźnika pozostaje aktywny, jeżeli przekroczenie nie ustąpiło (sygnalizator świeci informując o trwaniu przekroczenia). Jeżeli przekroczenie ustąpi – obwód przekaźnika będzie nieaktywny.
 - **UWAGA!** Niezależnie od wybranego *Trybu pracy*, po wyłączeniu urządzenia oraz podczas uruchamiania, wyjścia przekaźnikowe pozostają otwarte.

Pozostałe parametry karty ustawiane są w zakładce kanały.

• OUT3

Tryb pracy: Wyłączony (Wyłączony, 0-20mA, 4-20mA, 0-24mA, 0-5V, 0-10V)^[1] **Źródło: Kanał 1** (Kanał 1, .., 30)^[2]

Wartość awaryjna: Wyłączona (Wyłączona, Stała)^[3]

- [1]: Ustawienie trybu pracy danego wyjścia na wytworzenie standardowych sygnałów pętli prądowej: 0-20 mA, 4-20 mA, 0-24 mA lub standardowych sygnałów pętli napięciowej: 0-5V, 0-10V, (*Wyłączony* ustawia wyjście w trybie 0-5V i wartość 0 V).
- [2]: Wybór kanału, którego wartość zostanie poddana retransmisji. Zakres wyjściowy może być ustawiony jako podzakres retransmitowanego zakresu kanału przez wprowadzenie wartości procesowej dla minimalnej i maksymalnej wartości zakresu.
- [3]: Wartość awaryjna z kanału źródłowego może być retransmitowana jako "specjalna", stała wartość na wyjściu. Jeśli wybrano opcję *Wyłączona*, wartość wynosi 0, z wyjątkiem trybu 4-20 mA, gdzie jest ustawiona na 3,6 mA.

Pozostałe parametry karty ustawiane są w zakładce kanały.

• PSBATT
W oknie I/O nie jest wymagana dodatkowa konfiguracja modułu. Parametry pracy modułu automatycznie są przypisane do kolejnych wirtualnych wejść pomiarowych:

- 1. Stan naładowania baterii {1; 2; 3}:
 - 1 niski poziom naładowania baterii
 - 2 średni poziom naładowania baterii
 - 3 wysoki poziom naładowania baterii

UWAGA! Orientacyjny wskaźnik naładowania jest zależny od obciążenia.

- 2. Stan pracy: ładowanie/rozładowywanie {0; 1; 2; 3}:
 - 0 praca z akumulatora (zasilanie zewnętrzne wyłączone)
 - 1 ładowanie wstępne
 - 2 ładowanie zasadnicze
 - 3 ładowanie podtrzymujące
- 3. Napięcie (BATT1+BATT2) [V] (wartość orientacyjna, dokładność ±5%)
- 4. Prąd ładowania [A]
- 5. Temperatura baterii BATT1 [°C]
- 6. Temperatura baterii BATT2 [°C]

Aby wyświetlić parametry, należy przypisać je do wybranych kanałów w oknie ustawień <u>Kanały</u>. Po wyborze slotu (A, B) należy podać wejście wskazujące na jeden z wymienionych wyżej parametrów.

12.3 Ustawienia komunikacji

Okno zostało podzielone na cztery podokna: ustawienia parametrów Ethernet, ustawienia wysyłania wiadomości E-mail, ustawienia dotyczące komunikacji Modbus TCP oraz ustawienia dotyczące komunikacji RS-485 (przełączanie zostało zrealizowane za pomocą zakładek).

Przyciski zatwierdzenia oraz anuluj za są wspólne dla wszystkich okien, naciśnięcie powoduje powrót do Menu Głównego.

	Kor	Komunikacja		0-04-19 14:48
Ethernet	E-mail	Modbus TCP	RS485 COM	
S	Serwery	Re	jestry	
Tryb	Adres	Opóźnienie	Częstotliwość 🔺	
Włączony	192.168.0.10:502	5000	2	dm
Wyłączony	192.168.0.10:502	5000	2	inist
Wyłączony	192.168.0.10:502	5000	2	.rato
Wyłączony	192.168.0.10:502	5000	2]
		\sim	×	

Rys. 12.3 Przykładowy wygląd okna ustawień - Komunikacja.

12.3.1 Ethernet

W celu poprawnej komunikacji między przyrządem a systemem nadrzędnym należy odpowiednio skonfigurować wszystkie parametry potrzebne do komunikacji.

Adres IP: [wartość]^[1]

Port Modbus TCP: [wartość]^[2]

Maska: [wartość]^[1]

Brama: [wartość]^[1]

Podstawowy DNS: [wartość]^[3]

Zapasowy DNS: [wartość]^[3]

- [1]: Parametry należy ustawić zgodnie z siecią, w której urządzenie ma pracować.
- [2]: Zaleca się ustawienie portu 502, jako dedykowanego do Modbus TCP (port 80 nie jest dozwolony zarezerwowany dla serwera WWW urządzenia).
- [3]: Adres DNS jest niezbędny w przypadku korzystania z funkcji e-mail. Domyślne ustawienia serwera DNS: adres podstawowy 8.8.8.8, adres zapasowy 8.8.4.4.

12.3.2 E-mail

Urządzenie umożliwia przesłanie automatycznych wiadomości e-mail dotyczących stanów alarmów oraz wartości liczników. Przed konfiguracją zakładki *E-mail* należy skonfigurować zakładkę *Ethernet* i zapisać zmiany ustawień (należy wyjść z menu, urządzenie zostanie uruchomione ponownie). Urządzenie musi być podłączone do sieci.

Wiadomość dotycząca stanów alarmów wysyłana jest po wystąpieniu i ustąpieniu przekroczenia przynajmniej jednego progu alarmowego (niezbędne jest zaznaczenie opcji *Powiadomienie e-mail*, w zakładce *Alarm 1 / Alarm 2,* więcej w rozdziale <u>Ustawienia Kanałów</u>). Jeśli kilka progów alarmowych zostało przekroczonych lub na kilku kanałach alarm ustąpił w tym samym momencie, urządzenie prześle zbiorczą informację dotyczącą tych alarmów. Temat wiadomości e-mail: DL2, ALARM, numer ID, opis urządzenia.

Wiadomość dotycząca stanów liczników wysyłana jest zgodnie z ustawieniami w zakładce *Raport cykliczny* (niezbędne jest zaznaczenie opcji *Powiadomienie e-mail*, w zakładce $\Sigma 1 / \Sigma 2$, więcej w rozdziale <u>Ustawienia Kanałów</u>). Temat wiadomości e-mail: DL2, RP, numer ID, opis urządzenia.

Zakładka Ogólne

Należy wprowadzić informacje dotyczące konta e-mail, z którego zostaną wysyłane wiadomości. Konto pocztowe musi mieć odblokowany serwer wychodzący (SMTP). Należy uwzględnić maksymalną ilość wysyłanych dziennie wiadomości dla konta e-mail.

- E-mail: [wartość]^[1] Login: [wartość]^[2] Hasło: [wartość]^[3] Serwer SMTP: [wartość]^[4] SSL (TLSv1.2): [znacznik]^[5] Port SMTP: [wartość]^[6] [1]: Pełny adres konta e-mail, z którego zostaną wysłane wiadomości.
- [2]: Login używany na serwerze do logowania na konto e-mail.
- [3]: Hasło używane na serwerze do logowania na konto e-mail.
- [4]: Adres serwera SMTP, na którym założone jest konto e-mail.
- [5]: Włączenie/wyłączenie szyfrowania poczty e-mail.

[6]: Port serwera SMTP (bez SSL) należy zweryfikować u dostawcy poczty (standardowo używane są porty 587 lub 25, (z SSL) port 465.

Zakładka Odbiorcy

W tabeli należy podać adresy e-mail odbiorców wiadomości. Nadawca wiadomości (zakładka *Ogólne*) może być odbiorcą wiadomości.

#: 1 (1, .., 5)^[1]

E-mail: [wartość]^[2]

- [1]: Liczba porządkowa, wiadomość może być wysłana do maksymalnie 5 odbiorców.
- [2]: Pełny adres e-mail odbiorcy na który zostaną wysłane wiadomości.

Zaleca się sprawdzenie poprawności konfiguracji połączenia przy użyciu przycisku **Testuj połączenie** znajdującego się pod tabelą. Zostanie wyświetlony komunikat dotyczący połączenia, kolor wskazuje na status połączenia: zielony – wiadomość wysłana poprawnie do wskazanych odbiorców, żółty – błąd autoryzacji (należy sprawdzić poprawność wprowadzonych danych w zakładce *Ogólne* oraz w zakładce *Odbiorcy*), czerwony – błąd połączenia (należy sprawdzić kabel Ethernetowy, połączenie z siecią oraz ustawienia Adresu IP, maski i bramy w zakładce *Ethernet*).

Wysłana na wskazane adresy e-mail testowa wiadomość zawiera model, firmware, numer seryjny, numer ID oraz opis urządzenia. Temat wiadomości: DL2, TEST, numer ID, opis urządzenia.

Zakładka Raport cykliczny

Raport cykliczny zawiera wartości i jednostki wybranych liczników w momencie wysłania wiadomości.

Tryb: Wyłączony (Wyłączony, Dzienny, Tygodniowy, Miesięczny)^[1]

Godzina: 0 (0, .., 23)^[2]

- [1]: Wiadomości e-mail mogą być wysyłane w Trybie: Dziennym należy wybrać Godzinę, Tygodniowym – należy wybrać Godzinę oraz Dzień tygodnia lub Miesięcznym – należy wybrać Godzinę oraz Dzień miesiąca wysłania wiadomości. E-mail zostanie wysłany we wskazanym czasie, będzie zawierać wartości i jednostki wartości mierzonej i liczników w momencie wysłania wiadomości (wartości przesyłane w formie tabeli).
- [2]: Wiadomość e-mail jest wysyłana o wskazanej pełnej godzinie lub każdorazowo po uruchomieniu urządzenia w ciągu wskazanej godziny. W przypadku błędnego połączenia z serwerem następują trzy próby wysłania raportu w odstępach 5 minutowych.

12.3.3 Modbus TCP (Client)

Urządzenie umożliwia odczyt maksymalnie 30 wartości z dwudziestu urządzeń, z wykorzystaniem połączenia Ethernet (protokół Modbus TCP). W celu poprawnego odczytu danych niezbędna jest konfiguracja zakładce *Serwery* oraz *Rejestry*.

Odczytane dane mogą być przypisane do kanału (typ kanału: *Modbus TCP*, więcej informacji w rozdziale <u>Ustawienia Kanałów</u>).

Zakładka Serwery

Istnieje możliwość konfiguracji do 20 niezależnych serwerów/połączeń.

Tryb: Włączony (Wyłączony, Włączony)^[1]

Adres:^[2] Adres IP: [wartość]^[3] Port: [wartość]^[4]

Opóźnienie: [wartość] ms (1000, ..., 60000)^[5]

Częstotliwość: [wartość] s (1, .., 3600)^[6]

- [1]: Włączenie/wyłączenie serwera. Jeśli czujnik lub urządzenie (urządzenie *slave*) połączone z serwerem zostanie odłączone, zaleca się wyłączenie serwera (zmiana w ustawieniach *Kanałów* oraz *Rejestrów* nie jest wymagana); po ponownym podłączeniu czujnika należy włączyć serwer.
- [2]: Kolumna *Adres* umożliwia jednoznaczną identyfikację dodanego serwera. Wprowadzone dane wyświetlane są w formacie *Adres IP:Port*, np. 192.168.2.15:502.
- [3]: Parametry należy ustawić zgodnie z siecią, w której urządzenie ma pracować.
- [4]: Zaleca się ustawienie portu 502, jako dedykowanego do Modbus TCP (port 80 nie jest dozwolony zarezerwowany dla serwera WWW urządzenia).
- [5]: Opóźnienie (timeout) oczekiwania na odpowiedź (Response).
- [6]: Częstotliwość wysyłania zapytania (Query). Jeśli kilka czujników jest podłączonych do jednego serwera, to wartość wprowadzona w polu *Częstotliwość* określa czas między zapytaniami o kolejne czujniki.

Zakładka Rejestry

#: 1 (1, .., 30)^[1]

Server: [wartość] (Wyłączony, wybór z listy dodanych serwerów)^[2]

Urządzenie: [adres urządzenia] (1, .., 247)^[3]

Adres: [wartość]^[4]

Typ: uint(16bit) (uint (16bit), int (16bit), uint (32bit), uint (32bit) sw, int (32bit), int (32bit) sw, float (32bit), float (32bit) sw, int (64bit), double (64bit))^[5]

- [1]: Liczba porządkowa, numer od 1 .. 30. Jeśli kilka czujników jest podłączonych do jednego serwera, zapytanie jest wysyłane do czujników w kolejności wynikającej z numeru liczby porządkowej.
- [2]: Wybór z listy dodanych serwerów (konfiguracja w zakładce *Serwery*). Istnieje możliwość przypisania do rejestru serwera w trybie *Wyłączony*.
- [3]: Adres Modbus RTU czujnika lub urządzenia (urządzenie Slave).
- [4]: Należy ustawić numer rejestru urządzenia, z którego będą odczytywane dane. Dostępny format 3xxxx / 3xxxxx lub 4xxxx / 4xxxxx, gdzie: 3 – Input register, 4 – Holding register, xxxx / xxxxx – czterocyfrowy / pięciocyfrowy adres. Wartość należy podać w systemie dziesiętnym. Więcej informacji w rozdziale <u>PROTOKÓŁ</u> <u>TRANSMISJI MODBUS RTU / MODBUS TCP</u>.
 - **UWAGA!** Możliwe jest grupowanie rejestrów, co przyspiesza transmisję danych. Jeśli dla jednego urządzenia zachowano kolejność adresów dla kolejnych rejestrów oraz tak dobrano wartość w polu Typ^[5], że suma wartości Adresu i Typu są kolejnymi liczbami, to podczas jednego zapytania można uzyskać wartość dla kilku kolejnych rejestrów w ramach jednej ramki komunikacji.

[5]: Wybór z rozwijalnej listy jednego z 10 dostępnych formatów, gdzie: uint – liczba całkowita bez znaku (unsigned integer), int – liczba całkowita ze znakiem (signed integer), float – liczba zmiennoprzecinkowa pojedynczej precyzji (single precision floating point), double – liczba zmiennoprzecinkowa podwójnej precyzji (double precision floating point), sw – zamiana kolejności rejestrów (swapped format). Więcej informacji w podrozdziale Typy danych. Należy wybrać format zgodny ze specyfikacją czytanego czujnika lub urządzenia.

12.3.4 RS-485 COM

Ustawienia portu RS-485 w urządzeniu muszą odpowiadać ustawieniom urządzenia nadrzędnego (*Master*).

Prędkość: 19200 (1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200)^[1]

Parzystość: NONE (NONE, EVEN, ODD)^[2]

Adres ModbusRTU: 1 (1, 2, .., 247)^[3]

- [1]: Prędkość transmisji powinna być ustawiona na najwyższą możliwą wartość. W przypadku dużych odległości lub wysokiego poziomu zakłóceń może być konieczne zmniejszenie prędkości. Niska prędkość transmisji wydłuża czas odczytu.
- [2]: Ustawienie kontroli Parzystości.
- [3]: W standardzie RS-485 do linii transmisji danych może być podłączonych do 32 nadajników/odbiorników. Każde urządzenie typu "slave" ma przydzielony inny adres.

Więcej informacji dotyczących typów danych, rejestrów i adresów Modbus w rozdziale <u>PROTOKÓŁ TRANSMISJI MODBUS RTU / MODBUS TCP</u>.

12.4 Ustawienia Kanałów

Wybór numeru kanału dokonywany jest za pomocą rozwijalnej listy w lewym górnym rogu ekranu. Opis kanału można edytować po naciśnięciu na obecny w polu *Opis*. Zostanie wtedy wyświetlona klawiatura ekranowa.

W oknie znajduje się sześć zakładek, umożliwiających konfigurację kanału: Wejścia, Ogólne, Alarm 1, Alarm 2, Σ1, Σ2.

Wszystkie ustawienia poszczególnych kanałów mogą być kopiowane i wklejane do innego kanału pomiarowego. Szczegółowe informacje w rozdziale <u>Kopiowanie ustawień kanałów</u>.

m 🤱			Kanały			AL REC 1	1-02-22 09:34
Kanał 1	▼	Opis		Ch	annel 1		
Wejścia	Ogólne	Alarm 1	Ala	m 2	Σ1	Σ2	
Typ kanału		Pomiarowy	▼				P
Wejście pomiaro	owe	A 🔻 1	▼	IN6I(2	24V)		dmii
Charakterystyka		Liniowa	▼				nisti
	4.0000 n	nA →	(0.0000			ato
	20.0000 n	nA →	12	500.000	0		
		Kopi	uj	\sim		×	

Rys. 12.4 Przykładowy wygląd okna ustawień kanału typu Modbus TCP - Kanały.

12.4.1 Wejścia

W zależności od wyboru typu kanału dostępne są odpowiednie ustawienia:

Typ kanału: Wyłączony(Wyłączony, Pomiarowy, Obliczeniowy, Modbus TCP
Demo(TEST))^[1]Wejście pomiarowe^[2]:Karta: A (A, B, M)^[2]

Numer wejścia: 1 (1, 2, 3, 4, 5, 6, CJC $^{\circ}$ C, CJC $^{\circ}$ F)^[3]

Charakterystyka: Liniowa (Liniowa, w zależności od rodzaju modułu)^[4]

- [1]: Możliwe ustawienia "Typu kanału": Wyłączony kanał jest wyłączony i niewyświetlany, Pomiarowy – zmierzona wartość procesowa z modułu wejściowego powinna zostać przypisana do kanału, Obliczeniowy – należy wprowadzić formułę matematyczną używaną do obliczeń – szczegóły w rozdziale <u>Kanały obliczeniowe</u>, Modbus TCP – należy wybrać z listy wejście pomiarowe, skonfigurowane w oknie ustawień Komunikacja, zakładka <u>Modbus TCP</u>, Demo(TEST) – wartość funkcji sin (t) jest generowana wirtualnie, umożliwiając np. test komunikacji bez zastosowanych sygnałów wejściowych.
- [2]: Dla "Typu kanału" *Pomiarowy:* rozwijana lista pozwala na wybór odpowiedniego slotu karty pomiarowej, po dokonaniu wyboru po prawej stronie od listy wyświetlone zostanie oznaczenie modułu, ułatwiające jego identyfikację. Dla "Typu kanału" *Modbus TCP*: rozwijalna lista pozwala na wybór odpowiedniego czujnika/ urządzenia (połączenie Ethernet); w celu umożliwienia identyfikacji opis zawiera: liczbę porządkową rejestru, adres urządzenia oraz informację o serwerze: Adres IP:Port.
- [3]: Dla "Typu kanału" Pomiarowy: rozwijana lista pozwala na wybór odpowiedniego numeru wejścia karty pomiarowej, do którego przypisany ma być dany kanał. Dla modułu IN6T oraz IN6 możliwe jest wybranie wirtualnego wejścia pomiarowego CJC°C lub CJC°F. Do wejść CJC przypisany jest pomiar temperatury wykonany czujnikiem wewnętrznym. Pomiar może być wykorzystywany do kompensacji temperatury spoiny odniesienia jeśli termopary są podłączone bezpośrednio do łączówki modułu.
- [4]: Typowo charakterystyka ustawiona jest jako Liniowa. Możliwe są również inne opcje (np. <u>Charakterystyka użytkownika</u>), w zależności od typu modułu. Przykładowo, dla modułu RTD dostępne są charakterystyki poszczególnych typów czujników. Dla kanału CJC°C lub CJC°F charakterystyka typowo ustawiana jest jako 1:1. Możliwe jest

wykonanie kalibracji poprzez wprowadzenie charakterystyki *Użytkownika*, która uwzględnia zmiany temperatury w poszczególnych zakresach temperaturowych lub charakterystyki *Liniowej*, która podnosi lub obniża mierzoną temperaturę o stałą, wskazaną ilość stopni. Należy pamiętać o ustawieniu jednakowej jednostki dla temperatury mierzonej i temperatury zimnych końców.

12.4.2 Ogólne

m 🤱	ŀ	Kanały	AL REC 1	2-02-24 16:30
Kanał 1 🛛 🔻	Opis	Kanał 1]
Wejścia Ogó	ne Alarm 1	Alarm 2 ∑1	Σ2	
Jednostka		Rozdzielczość 0.	0 🔻	Þ
Podstawa czasu	/s 🔻	Archiwizacja	\checkmark	dmii
Filtr	Wyłączony 🗸 🔻	Powiadomienie e-mai	I 🗸	nistr
Wartość awaryjna	Wyłączona 🔍 🔻	-		ato
Trend min.	0.0	Trend maks.	2.0	
Przypisanie I/O		Kopiuj	X	

Rys. 12.5 Przykładowy wygląd okna ustawień ogólnych kanału - Kanały.

Jednostka: [Brak] (tekst)^[1]

Podstawa czasu: - [/s, /m, /h]^[2]

Rozdzielczość: 0 (0, 0.0, 0.00, 0.000, 0.0000)^[3]

Filtr: Wyłączony (Wyłączony, 2s, 5s, 10s, 20s, 30s, 1min, 2min, 3min, 5min)[4]

Archiwizacja: Odznaczona (Odznaczona, Zaznaczona)^[5]

Wartość awaryjna: Wyłączona (Wyłączona, Stała [wartość])[6]

Powiadomienie e-mail: Odznaczona (Odznaczona, Zaznaczona)^[7]

Skala trendu:

Trend min.: [Wartość]^[8] Trend maks.: [Wartość]^[8]

- [1]: Jednostka ma charakter wyłącznie informacyjny. Użytkownik może wpisać dowolny ciąg znaków, który nie ma wpływu na wyniki zmierzone/obliczone przez urządzenie.
- [2]: "Podstawa czasu" ma kluczowe znaczenie dla pomiarów przepływu i obliczeń liczników. Niezależnie od wpisanej "Jednostki" to ustawiona wartość w polu "Podstawa czasu" determinuje obliczenia liczników i przepływu zgodnie z ustawieniem: /s (na sekundę), /min (na minutę), /h (na godzinę).
- [3]: Rozdzielczość określa ilość miejsc dziesiętnych w wyświetlanym wyniku. Ustawienie zbyt dużej rozdzielczości jest niecelowe, gdyż nie zwiększy dokładności pomiaru (np. dla pomiaru czujnikiem Pt100 trzy miejsca po przecinku nie spowodują pomiaru z dokładnością do 0,001 °C). Jednak w przypadku włączenia filtra o odpowiednio dużej stałej czasowej i rozsądnym zwiększeniu rozdzielczości można uzyskać informację o tendencji zmian.
- [4]: Funkcja filtr umożliwia "wygładzenie" gwałtownych skoków mierzonej wartości lub eliminację tła szumów pomiarowych. Zbyt duża wartość stałej czasowej filtru może

spowodować zafałszowanie obrazu zmian mierzonej wielkości poprzez "złagodzenie" zboczy narastania lub opadania, a nawet wyeliminowanie krótkotrwałego impulsu. Wartość stałej czasowej filtru należy odpowiednio dobrać do maksymalnej szybkości zmian mierzonego procesu.

- [5]: Umożliwia włączenie/wyłączenie archiwizacji wyników pomiarów danego kanału. Zaznaczenie okienka równoznaczne jest z włączeniem archiwizacji.
- [6]: Wartość awaryjna jest stałą wartością wyświetlaną zamiast wyniku pomiaru, w przypadku awarii sygnału wejściowego lub gdy wynik obliczeń jest poza zakresem.
- [6]: Dodanie wartości mierzonej do wiadomości e-mail wysyłanej w formie raportu cyklicznego (ustawienia <u>E-mail</u>).
- [8]: Umożliwia ustawienie zakresu wyświetlanej skali na wykresie trendów w oknie pojedynczego wyniku.

12.4.3 Alarm

Tryb: Wyłączony (Wyłączony, Górny, Dolny)^[1]

Typ: Alarm (Sterowanie, Alarm)^[2]

Poziom: [Brak] (tekst)^[3]

Histereza: [Brak] (tekst)^[4]

Kolor: Wyłączony (Wyłączony, Zielony, Żółty, Czerwony)^[5]

Wyjście: -- (--, A, B, M)^[6]

Zmiana częstotliwości archiwizacji: Odznaczona (Odznaczona, Zaznaczona)^[7]

Archiwizacja zdarzenia: Odznaczone (Odznaczone, Zaznaczone)^[8]

Powiadomienie e-mail: Odznaczone (Odznaczone, Zaznaczone)^[9]

- [1]: Tryb pracy progu może być ustawiony jako *Górny* (aktywny powyżej wartości poziomu) lub *Dolny* (aktywny poniżej wartości poziomu).
- [2]: Ustawienia "Typu": Alarm (nazywany również typem zatwierdzanym) umożliwia sygnalizację powiadomienia o alarmie z procedurą potwierdzenia; Sterowanie (nazywany również typem niezatwierdzanym) umożliwia wskazanie stanu progu lub użycie wyjść przekaźnikowych w celu ustawienia prostej regulacji włączania / wyłączania (np. ogrzewania lub chłodzenia)
- [3]: Wartość poziomu progu alarmowego wprowadza się w jednostkach mierzonej wielkości dla danego kanału pomiarowego.
- [4]: Wartość histerezy jest różnicą pomiędzy poziomem przekroczenia progu a powrotem. Wartość histerezy progu wpisuje się w jednostkach mierzonej wielkości dla danego kanału pomiarowego. Przykładowo, dla progu górnego, poziom 48 °C i histereza 0,5 °C oznacza, że przekroczenie nastąpi powyżej wartości 48 °C, a powrót do stanu wyjściowego poniżej 47,5°C (48-0,5). W przypadku progu dolnego, poziomu -15 °C i histerezy 0,2°C – przekroczenie nastąpi poniżej -15 °C, a powrót powyżej -14,8 °C (-(15-0,2)).
- [5]: Każdy alarm/próg kontrolny może mieć przypisany kolor: *Zielony*, *Żółty* lub *Czerwony*. Przekroczenie danego progu sygnalizowane jest przez zmianę koloru wyświetlania wyniku na kolor przypisany do danego alarmu.
- [6]: Rozwijana lista umożliwia wybór odpowiedniego modułu i wyjścia do którego podłączony jest wykorzystywany przekaźnik wyjściowy. Po dokonaniu wyboru, pod listą, wyświetlone zostanie oznaczenie modułu, ułatwiające jego identyfikację.

- [7]: Przekroczenie progu alarmowo-sterującego może sterować archiwizacją wyników pomiarów. Archiwum może mieć zaprogramowane dwie różne częstości rejestracji. Przekroczenie progu może przełączać z Częstość zapisu I na Częstość zapisu II – szczegółowe informacje o częstościach zapisu wartości do archiwum w rozdziale <u>Ustawienia archiwum</u>.
- [8]: Zaznaczenie tej opcji włącza archiwizację przekroczeń progów alarmowo-sterujących do pliku zdarzeń.
- [9]: Zaznaczenie tej opcji włącza funkcję informowania o przekroczeniach oraz o ustąpieniach przekroczeń progów alarmowo-sterujących przy pomocy wiadomości e-mail (ustawienia <u>E-mail</u>). Wiadomość o ustąpieniu alarmu zostanie wysłana automatycznie dla typu alarmu sterowanie, dla typu alarm po potwierdzeniu alarmu.

12.4.4 Liczniki

Tryb: Wyłączony (Wyłączony, Niekasowalny, Kasowalny, Dzienny, Tygodniowy, Miesięczny)^[1]

Jednostka: [Brak] (tekst)^[2]

Mnożnik: 1 (0.001, 1, 1000)^[3]

Rozdzielczość: 0 (0, 0.0, 0.00, 0.000, 0.0000)^[4]

Archiwizacja: Odznaczona (Odznaczona, Zaznaczona)^[5]

Powiadomienie e-mail: Odznaczone (Odznaczone, Zaznaczone)^[6]

- [1]: Każdy licznik może być ustawiony w jednej z sześciu pozycji: Wyłączony wartości nie są zliczane, Kasowalny – użytkownik ma możliwość w dowolnym momencie wyzerowania licznika, Niekasowalny – użytkownik nie ma możliwości zerowania licznika, Dzienny – licznik kasuje się co 24 godziny, Tygodniowy – licznik kasuje się po upływie tygodnia, Miesięczny – licznik kasuje się po upływie miesiąca.
- [2]: Jednostka ma charakter wyłącznie informacyjny. Użytkownik może wpisać dowolny ciąg znaków, który nie ma wpływu na wyniki zmierzone / obliczone przez urządzenie.
- [3]: Mnożnik umożliwia przemnożenie wyników pomiarów przez jedną z trzech wartości wybieranych z listy. Np. jeżeli podłączony do urządzenia przepływomierz mierzy przepływ w m³/s, a użytkownik chce, aby wynik wyświetlany był w dm³/s należy ustawić mnożnik na wartość 1000. W odwrotnej sytuacji, kiedy pomiar dokonywany byłby w dm³/s, a użytkownik chciałby alby wartości zliczane przez licznik wyświetlane były w m³/s należy ustawić wartość mnożnika jako 0.001.

UWAGA! Należy pamiętać, że ustawienie wartości mnożnika nie determinuje wyświetlanej jednostki i odwrotnie.

- [4]: Ilość wyświetlanych miejsc dziesiętnych. Nie wpływa na dokładność naliczania i może być zmieniona w dowolnym momencie bez wpływu na stan licznika.
- [5]: Umożliwia włączenie/wyłączenie archiwizacji licznika. Zaznaczenie okienka równoznaczne jest z włączeniem procesu archiwizacji.
- [6]: Dodanie wartości licznika do wiadomości e-mail wysyłanej w formie raportu cyklicznego (ustawienia <u>E-mail</u>).

W przypadku niektórych modułów wygląd poszczególnych zakładek może nieznacznie różnić się od opisanych powyżej.

12.5 Ustawienia Ekranów

Okno ustawień "Ekrany" umożliwia zmianę parametrów wyświetlania okna *Tabele Wyników* oraz okna *Trendy*. Zakładki umożliwiają przełączanie pomiędzy ekranami ustawień. Przełączanie pomiędzy poszczególnymi ustawieniami tabel/trendów odbywa się przy pomocy rozwijanej listy umieszczonej w lewej, górnej części ekranu. Istnieje możliwość zdefiniowania do 6 tabel i 6 okien trendów. Każda tabela/trend może posiadać własną dowolną nazwę. Zmiana jest możliwa po naciśnięciu aktualnej w polu *Opis*.

W przypadku, gdy dla danego trendu/tabeli nie jest ustawiona żadna wyświetlana wartość, dany trend/tabela nie będzie wyświetlana w oknie *Tabele Wyników* oraz w oknie *Trendy*. Przyciski zatwierdzenia oraz anuluj są wspólne dla obu okien, naciśnięcie powoduje powrót do Menu Głównego.

12.5.1 Tabele

Rys. 12.6 Przykładowy wygląd okna ustawień Ekranów (edycja ekranu Tabele Wyników).

W lewej, górnej części okna znajduje się rozwijana lista, z której należy wybrać Tabelę, która będzie modyfikowana. Po prawej stronie od listy wyboru znajduje się pole *Opis*, w którym tabeli można nadać dowolną nazwę, jednak nie dłuższą niż 20 znaków.

Poniżej znajduje się zarys tabeli. Niezaprogramowane komórki oznaczone są napisem – **Wyłączony.** Zmiana wyświetlanych wartości jest możliwa po naciśnięciu odpowiedniej komórki tabeli. Należy wybrać odpowiedni kanał (od 1 do 30) i typ prezentowanej wartości: **PV** – wartość bieżąca, **Maksimum** – wartość maksymalna, **Minimum** – wartość minimalna, $\sum 1$ – licznik nr 1, $\sum 2$ – licznik nr 2.

12.5.2 Trendy

m 🖁	Ek	rany	RL REC	21-02-18 12:21
Tabele Wyników		Trendy		
Trend 1 💌	Opis	Temperatu	ıry	
	Maksimum	30.0000		Þ
	Minimum	10.0000		dmir
Kanał 1 🛛 🔻		Wyłączony	▼	nistra
Kanał 6 🛛 🔻		Wyłączony	▼	ator
Wyłączony 🔻		Wyłączony	▼	
		\checkmark	×	

Rys. 12.7 Przykładowy wygląd okna ustawień Ekrany (edycja ekranu Trendy).

W lewej, górnej części okna znajduje się rozwijana lista, z której należy wybrać jeden z sześciu dostępnych wykresów, który będzie modyfikowany. Po prawej stronie od listy wyboru znajduje się pole *Opis*, w którym każdemu wykresowi można nadać dowolną nazwę, jednak nie dłuższą niż 20 znaków.

Dla każdego z okien wykresów istnieje możliwość zaprogramowania do 6 linii trendu, każdej z nich przypisany jest inny kolor. W celu zaprogramowania linii, z rozwijanych list (znajdujących się obok poszczególnych pól kolorów) należy wybrać odpowiedni kanał. Ponadto, możliwe jest zdefiniowanie wartości maksymalnej i minimalnej danego trendu.

12.6 Ustawienia Archiwum

Okno podzielone jest na dwie części. Górna część okna umożliwia zmianę ustawień pracy archiwum za pomocą rozwijalnych list.

Rys. 12.8 Przykładowy wygląd okna ustawień Archiwum.

Pliki archiwum: Dzienny (Dzienny, Tygodniowy, Miesięczny)^[1]

Częstość zapisu arch. głównego

I: 2s (2s, 5s, 10s, 15s, 30s, 1min, 5min, 10min, 15min, 30min, 1h, 2h, 4h, 12h, 24h)^[2] **II: 2s** (2s, 5s, 10s, 15s, 30s, 1min, 5min, 10min, 15min, 30min, 1h, 2h, 4h, 12h, 24h)^[3]

Częstość zapisu arch. liczników: 1min (1min, 5min, 10min, 15min, 30min, 1h, 2h, 4h, 12h, 24h)^[4]

- [1]: Pliki archiwum tworzone są w systemie dziennym, tygodniowym lub miesięcznym.
- [2]: Podstawowa częstość zapisu (I). Częstość zapisu do archiwum powinna być właściwie dobrana do procesu pomiarowego. Zbyt częsty zapis powoduje zgromadzenie dużej ilości wyników, co utrudnia analizę danych. Z kolei zbyt rzadki zapis może spowodować utratę szybkich zmian wielkości mierzonych.
- [3]: Druga częstość zapisu (II) jest używana w przypadku sterowania zapisem od przekroczenia progów alarmowo-sterujących (zobacz rozdział <u>Alarm</u>).
- [4]: Częstość, z jaką zapisywany jest stan liczników do pliku archiwum.

W dolnej części okna wyświetlane są **Wartości procesowe** oraz **Liczniki**, przełączanie pomiędzy oknami odbywa się za pomocą zakładek.

Wartości procesowe

Okno wyświetla aktualny stan zapisu do archiwum wartości procesowych. Kolor szary oznacza, że wartość nie jest archiwizowana, zielony oznacza archiwizację.

Liczniki

Okno wyświetla aktualny stan zapisu do archiwum liczników. Każdy prostokąt podzielony jest na dwie części, odpowiadające kolejno Licznikowi 1 i Licznikowi 2 dla każdego kanału. Kolor szary oznacza brak archiwizacji, zielony oznacza archiwizację.

W oknie Archiwum wyświetlana jest jedynie informacja dotycząca włączonego lub wyłączonego procesu archiwizacji. Włączenie lub wyłączenie archiwizacji możliwe jest w oknie ustawień Kanałów (więcej informacji w rozdziale <u>Ustawienia Kanałów</u>). W oknie możliwe jest zablokowanie możliwości sterowania procesem archiwizacji przez Użytkownika (Start/Stop przez Użytkownika).

13 ARCHIWUM

13.1 Rozpoczęcie, wznowienie i zatrzymanie archiwizacji

Okno Archiwum wyświetlane jest po naciśnięciu ikony a na rozwijalnym pasku menu. Za pomocą przycisków funkcyjnych możliwe jest rozpoczęcie, wznowienie lub zatrzymanie procesu archiwizacji.

W lewym dolnym rogu ekranu znajdują się przyciski funkcyjne, które mogą uruchomić **START** lub zatrzymać **STOP** archiwizację.

Utworzenie nowego archiwum jest możliwe po zatrzymaniu aktualnego procesu archiwizacji. Następnie, należy nacisnąć przycisk Nowe Archiwum . Po utworzeniu nowego pliku archiwum należy ponownie uruchomić archiwizację (wcisnąć przycisk **START**).

Wyłączenie zasilania przyrządu może spowodować brak zapisu krótkiego, końcowego okresu archiwizacji (ok. 1 minuty).

13.2 Ustawienia archiwum

Ustawienia archiwum dostępne są po wybraniu ikony z rozwijalnego paska menu, a następnie ikony archiwum. Szczegóły w rozdziale <u>Ustawienia archiwum</u>.

13.3 Typy plików archiwum

Urządzenie zapisuje trzy typy plików archiwum:

- Archiwum danych (organizacja nazwy pliku: YYADXX.csv)
- Archiwum liczników (organizacja nazwy pliku: YYATXX.csv)
- Archiwum zdarzeń (organizacja nazwy pliku: YYAEXX.csv)
- XX numer pliku archiwum, numeracja zaczyna się od 01 i kończy na 99. W przypadku przekroczenia liczby 99 numeracja ponownie zaczyna się do 01.
- YY ID urządzenia, wartość zgodna z ustawieniami użytkownika, w przypadku zmiany ID zostanie założony nowy plik.

Każde archiwum zapisywane jest zgodnie z formatem *.csv (standardowy format tekstu arkusza kalkulacyjnego).

13.4 Sposób tworzenia plików archiwum

Plik archiwum tworzony jest w następujących przypadkach:

- utworzenie nowego pliku przez użytkownika,
- zgodnie z ustawionym parametrem, cyklicznie (dzienny, tygodniowy, miesięczny),
- zmiana parametrów, wymuszająca założenie nowego pliku.

Nowy plik archiwum jest zakładany w przypadku braku pliku archiwum.

13.5 Częstotliwość zapisu rekordów

Rekordy archiwum danych są zapisywane co: 2 s, 5 s, 10 s, 15 s, 30 s, 1 min, 5 min, 10 min, 15 min, 30 min, 1 h, 2 h, 4 h, 12 h, 24 h, zgodnie z ustawieniami (więcej informacji w rozdziale <u>Ustawienia archiwum</u>).

Rekordy w archiwum liczników są co: 1 min, 5 min, 10 min, 15 min, 30 min, 1 h, 2 h, 4 h, 12 h, 24 h, zgodnie z ustawieniami (więcej informacji w rozdziale <u>Ustawienia archiwum</u>).

Rekord w archiwum zdarzeń zapisywany jest w momencie wystąpienia zdarzenia (np. włączenie/wyłączenie zasilania, przekroczenie alarmu, zmiana parametrów urządzenia, logowanie użytkownika).

13.6 Organizacja plików archiwum

Każde archiwum posiada w nagłówek, zawierający następujące informacje:

DEVICE MODEL TYPE, CRC1	, FW VERSION, SERIAL NUMBER, ID, NUMBER OF ROW, ARCHIVE
DEVICE MODEL FW VERSION	 model urządzenia, dla DL2 to DL2 wersja firmware w której archiwum zostało utworzone, aktualizacja firmware skutkuje utworzeniem nowego pliku archiwum
SERIAL NUMBER	– numer seryjny urządzenia
ID	– ID urządzenia
NUMBER OF ROW	– informacja o ilości wierszy w nagłówku
ARCHIVE TYPE	 – typ archiwum: DATA (archiwum danych), EVENT (archiwum zdarzeń), TOT (archiwum liczników)
CRC1	- kontrola CRC

Pliki archiwum danych i liczników posiadają dodatkowy nagłówek, który zawiera informacje na temat ustawionych parametrów (wybrane kanały, opis, jednostkę itp.).

13.6.1 Archiwum danych

Organizacja dodatkowego nagłówka w pliku archiwum danych:

CHANNEL, DESCRIPTION, UNIT, INPUT TYPE, INPUT NO

CHANNEL	– numer kanału		
DESCRIPTION	– opis kanału, zależny od ustawień w urządzeniu		
UNIT	– jednostka przypisana do kanału		
INPUT TYPE	 typ wejścia pomiarowego przypisany do kanału: ME (pomiarowy), CO (obliczeniowy), RE (Modbus TCP), DE (Demo(TEST)), (wyłączony). 		
INPUT NO	 – dla kanału <i>Pomiarowego</i> numer przypisanego wejścia pomiarowego: XY (X – numer modułu, Y – numer wejścia w module); dla typu kanału <i>Modbus TCP</i>: numer rejestru (1 30); dla 		

typu kanału Obliczeniowego, Demo(TEST) oraz Wyłączonego: --.

Organizacja rekordów zapisanych w pliku archiwum danych:

DATE, TIME, DST, CH 1, CH 2, ... , CH 30, CRC

	data zanjau rekardu w farmanja DD MM DD
DATE	– data zapisu rekordu w formacie RR-MM-DD
TIME	 – czas zapisu rekordu w formacie GG:MM:SS
DST	– informacja o włączonym czasie letnim (1) lub zimowym (0)
СН Х	– wartość (X – numer kanału od 1 do 30)
CRC2	– kontrola CRC

13.6.2 Archiwum liczników

Organizacja dodatkowego nagłówka w pliku archiwum liczników:

CHANNEL, DESCRIPTION, TOTALIZER 1 TYPE, TOTALIZER 1 UNIT, TOTALIZER 2 TYPE, TOTALIZER 2 UNIT

CHANNEL	– numer kanału
DESCRIPTION	 opis kanału, zależny od ustawień w urządzeniu
TOTALIZER 1 TYPE/	 tryb licznika: ' ' – wyłączony; '1' – niekasowalny; '2' – kasowalny;
TOTALIZER 2 TYPE	'3' – dzienny; '4' – tygodniowy; '5' – miesięczny
TOTALIZER 1 UNIT/ TOTALIZER 2 UNIT	 jednostka przypisana do licznika

Organizacja rekordów zapisanych w pliku archiwum liczników:

DATE, TIME, DST, CH1:T1, CH1:T2, CH2:T1, ..., CH30:T2, CRC2

DATE	 data zapisu rekordu w formacie RR-MM-DD
TIME	 – czas zapisu rekordu w formacie GG:MM:SS
DST	– informacja o włączonym czasie letnim (1) lub zimowym (0)
CHXX:TY	 wartość licznika (XX – numer kanału od 1 do 30; Y – numer licznika: 1 lub 2)
CRC2	– kontrola CRC

13.6.1 Archiwum zdarzeń

Organizacja rekordów zapisanych w pliku archiwum zdarzeń:

DATE, TIME, DST, EVENT CODE, CRC2

DATE	 data zapisu rekordu w formacie RR-MM-DD
TIME	 – czas zapisu rekordu w formacie GG:MM:SS
DST	 – informacja o włączonym czasie letnim (1) lub zimowym (0)
EVENT CODE	– kod zdarzenia (więcej informacji poniżej)
CRC2	– kontrola CRC

W archiwum zdarzeń zapisywane są następujące zdarzenia:

SYS:STOP	 wyłączenie zasilania
SYS:START	 włączenie zasilania
ARCH:NEW	 utworzenie nowego pliku archiwum
ARCH:STOP	– zatrzymanie archiwizacji danych/liczników
ARCH:START	- rozpoczęcie archiwizacji danych/liczników
SYS:NEW SETTINGS	 zapisanie nowych ustawień
SYS:TIME CHANGED	– zmiana czasu
SYS:DATE CHANGED	– zmiana daty
SYS:CHx: AUX VALUES RESET	 wyzerowanie wartości pomocniczych dla kanału "x" (min, max, liczniki)

SYS: ALL CHANNELS: AUX VALUES RESET	 wyzerowanie wartości pomocniczych dla wszystkich kanałach (min. max. liczniki)
AL:ACK	 – potwierdzenie alarmów
AL:CHx ALy ON	 włączenie alarmu "y" na kanale "x"
AL:CHx ALy OFF	– wyłączenie alarmu "y" na kanale "x"
EMAIL:OK	 przesłanie wiadomości e-mail
EMAIL:ERROR	 próba przesłania wiadomości e-mail nie powiodła się
SYS:BOARD x RESET	 restart płytki "x" z powodu błędu komunikacji
SYS:WATCHDOG RESET	 restart urządzenia z powodu przekroczenia czasu Watchdog
SYS:LOGIN: xxxxx SYS:LOGOUT	– zalogowanie użytkownika xxxx – wylogowanie użytkownika

13.7 Kopiowanie plików archiwum z urządzenia

Kopiowanie plików archiwum z urządzenia jest możliwe: z wykorzystaniem zewnętrznej pamięci USB typu flash (pendrive) lub przy użyciu połączenia Ethernet i serwera WWW urządzenia.

13.7.1 Kopiowanie plików archiwum z wykorzystaniem pamięci USB

Po podłączeniu pamięci zewnętrznej do portu USB, należy z paska menu wybrać przycisk , a następnie ikonę

Szczegółowe informacje dotyczące kasowania plików i kopiowania plików na pendrive zostały opisane w rozdziale Zapis i odczyt plików za pomocą portu USB.

13.7.2 Kopiowanie plików archiwum z wykorzystaniem serwera WWW

Pliki archiwum mogą być kopiowane z wykorzystaniem serwera WWW urządzenia. Należy podłączyć urządzenie wykorzystując połączenie Ethernet i postępować zgodnie z instrukcjami opisanymi w rozdziale <u>Serwer WWW</u>.

13.8 System automatycznego czyszczenia dysku

Urządzenie posiada system automatycznego oczyszczania dysku.

Oczyszczanie dysku uruchamia się po przekroczeniu 95% pojemności. Oczyszczenie następuje do momentu osiągnięcia 90% pojemności dysku. Jeśli dysk nie będzie mógł być oczyszczony do 90% to zakończy się ono wcześniej.

Jeśli po oczyszczeniu wartość zapełnienia dysku będzie pomiędzy 91% a 94% pojemności to oczyszczenie zakończy się poprawnie i archiwizacja będzie kontynuowana.

Jeśli po oczyszczeniu wartość zapełnienia dysku będzie nadal powyżej 95% pojemności to zostanie wywołany błąd a archiwizacja zostanie zatrzymana.

m 🔒	Arch	iwum	l	REC	m	2			Arch	iwum				
Archiwum		12 (Dzi	ienne)		Archiwum						12 (Dz	tienne)		
Częstość zapisu arch. głó	wnego	1 s	1 s		Częstość za	apisu arch	. głównego	5			1 s		1 s	
Częstość zapisu arch. licz	ników	1 m	in		Częstość za	apisu arch	. liczników				1 m	nin		
24-02-01 14:51:57					24-02-01 1	4:58:52								
	Automatyczne czyszcz	enie dysku zakończor	ne.					Błąd auto Archis	matyczneg wizacja zos	go czyszczi itała zatrzy	enia dysku /mana.			
				\checkmark										/
B.ΔpS B.PR B.c	mR B.qvR B.qNR	B.pR B.TR	B.pR B.hR	B.ΔpR	B.ΔpS	B.PR	B.qmR	B.qvR	B.qNR	B.pR	B.TR	B.pR	B.hR	B.ΔpR
Stop	Nowe archiwum	Podgląd archiwu	im U	USB	Si	tart	N	lowe arch	iwum	Podgl	ąd archiwi	um	U	В

Rys. 12.9 Komunikaty dotyczące automatycznego czyszczenia dysku.

14 FUNKCJE DODATKOWE

14.1 Dodatkowe funkcje kanałów

14.1.1 Kanały obliczeniowe

W celu ustawienia kanału obliczeniowego należy wybrać z rozwijalnego paska menu przycisk , a następnie ikonę **Kanały**. W zakładce 'Wejścia' należy ustawić typ kanału: *Obliczeniowy* oraz wpisać formułę, za pomocą której zostanie obliczona wartość.

Urządzenie umożliwia wykonanie wybranych operacji matematycznych: dodawanie, odejmowanie, dzielenie, mnożenie, podnoszenie do 2, 3 lub dowolnej potęgi oraz pierwiastkowanie. Wprowadzona formuła może zawierać maksymalnie 200 znaków.

Urządzenie wykonuje obliczenia zgodnie z kolejnością wykonywania działań (działania w nawiasach, potęgowanie/pierwiastkowanie, dzielenie/mnożenie, dodawanie/odejmowanie).

Do obliczeń możne zostać wykorzystana:

- wartość innego kanału, numer kanału należy poprzedzić znakiem #x,
- wartość licznika w kanale, numer licznika należy poprzedzić znakiem ∑y#x,
- stan alarmu w kanale, numer alarmy należy poprzedzić znakiem @y#x y –numer licznik lub stan alarmu [1 lub 2], x – numer kanału [1 – 30]

Przykładowo:

•	formuła	#1 + #2	sumuje wartości kanałów pierwszego i drugiego.
•	formuła	∑1#1 + ∑1#2	sumuje wartość dwóch liczników.
•	formuła	@1#1 x #2	mnoży wartość kanału przez alarm.

W przypadku pierwiastkowania, obliczana jest wartość tylko pierwszej wprowadzonej liczby po znaku $\sqrt{.}$ Jeżeli pierwiastek ma zostać obliczony z wartości kilku kanałów, należy pierwiastkowaną wartość umieścić w nawiasie.

Przykładowo:

٠	formuła	√ 123	wylicza pierwiastek z liczby 123,
•	formuła	√ #1	wylicza pierwiastek z wartości kanału 1,
•	formuła	√ #1+#2	wylicza pierwiastek z wartości kanału 1 i do obliczonej wartości dodaje wartość kanału 2,
•	formuła	√ (#1+#2)	wylicza pierwiastek z sumy wartości kanału 1 i 2.

Analogicznie, w przypadku potęgowania (możliwość wyboru drugiej i trzeciej potęgi), obliczana jest wartość tylko pierwszej wprowadzonej liczby przed znakiem ² lub ³. Jeżeli spotęgowana ma zostać wartość z kilku kanałów, należy potęgowaną wartość umieścić w nawiasie.

Przykładowo:

•	formuła	123 ²	podnosi do potęgi 2 liczbę 123,
٠	formuła	#1 ²	podnosi do potęgi 2 wartość kanału 1,

• formuła		#1+#2 ²	podnosi do potęgi 2 wartość kanału 2 i do			
			obliczonej wartości dodaje wartość kanału 1,			
٠	formuła	(#1+#2) ²	podnosi do potęgi 2 wartość z sumy kanałów 1 i 2			

Urządzenie umożliwia podnoszenie liczby do dowolnej potęgi (symbol ^). W przypadku wykładnika który nie jest liczbą całkowitą, podstawa musi być dodatnia. Jeżeli spotęgowana ma zostać wartość z kilku kanałów, należy potęgowaną wartość umieścić w nawiasie. Jeśli wykładnik zawiera więcej niż jeden znak należy umieścić go w nawiasie.

Przykładowo:

• formuła	123^4	podnosi do potęgi 4 liczbę 123,					
 formuła 	123^(-4)	podnosi do potęgi -4 liczbę 123,					
 formuła 	123^4^3	oznacza 123 ^{4·3} ,					
 formuła 	123^(4^3)	oznacza $123^{4^3} = 123^{64}$,					
 formuła 	#1^(1÷3)	podnosi do potęgi 1 wartość kanału 1,					
 formuła 	#1^(#2)	podnosi wartość kanału 1 do potęgi równej wartości kanału 2,					
 formuła 	#1+#2 [^] (1÷3)	podnosi do potęgi $\frac{1}{3}$ wartość kanału 2 i do obliczonej wartości dodaje wartość kanału 1					
 formuła 	(#1+#2) [^] (1÷3)	podnosi do potęgi $\frac{1}{3}$ wartość z sumy kanałów 1 i 2,					
 formula 	#1^(#2+#3)	podnosi wartość kanału 1 do potęgi równej sumie wartości kanałów 2 i 3.					

Rys. 14.1 Ustawienia kanałów obliczeniowych - wprowadzanie formuły kanału obliczeniowego.

Kanały obliczeniowe mogą być wyświetlane w oknie <u>Tabele Wyników</u>, w oknie <u>Trendy</u> oraz w <u>oknie pojedynczego wyniku</u>. Istnieje możliwość ustawienia alarmów (<u>Alarmy</u>) oraz archiwizacji ich wartości (<u>Archiwum</u>).

14.1.2 Charakterystyka użytkownika

Charakterystyka użytkownika podawana jest w postaci par punktów: wartość odpowiednio: mierzonej rezystancji, prądu, napięcia itd. (wartość x) oraz wartość wyświetlana w odpowiednich jednostkach (wartość y). Użytkownik ma możliwość dodawania (**Dodaj punkt**), usuwania (**Usuń punkt**) oraz edytowania (**Edytuj wartość**) punktów charakterystyki, przy czym minimalna ilość punktów to 2, a maksymalna 100. Użytkownik ma możliwość dodania do 10 charakterystyk.

W celu dodania nowej charakterystyki, w oknie ustawień **Kanały** należy wybrać z rozwijanej listy w polu Charakterystyka opcję: *Użytkownika*, a następnie zaznaczyć jedną

z dziesięciu dostępnych pozycji i wybrać przycisk **Przeglądaj.** Zmiana nazwy charakterystyki po naciśnięciu na obecną nazwę w polu *Opis*.

Nowe punkty mogą być dodane w dowolnej kolejności (**Dodaj punkt**), ponieważ są automatycznie rozpoznawane i sortowane względem wartości mierzonej x. Aby usunąć punkt, należy go zaznaczyć (kliknąć), a następnie wybrać opcję **Usuń punkt**. Aby edytować punkt, należy go zaznaczyć (kliknąć), a następnie wybrać opcję **Edytuj wartość**.

Rys. 14.2 Ustawienia kanałów obliczeniowych - wprowadzanie charakterystyki użytkownika.

Do charakterystyki nie można wprowadzić dwóch identycznych wartości mierzonych x. Tak wprowadzone dane zostaną potraktowane jako błędne i przy próbie zapisu zostaną zaznaczone na czerwono, jako pozycje do poprawienia.

Po wprowadzeniu punktów charakterystyki, potwierdź chęć dokonania zmian naciskając przycisk **S**. Aby anulować wprowadzone zmiany naciśnij przycisk **S**.

W programie *DL-Config* możliwe jest dodanie charakterystyki z poziomu komputera. Plik z punktami charakterystyki musi być w formacie *.csv. Kolumny w pliku muszą być podpisane jako "x" (poprzednia kolumna) oraz "y" (następna kolumna). Należy używać kropki jako separatora dziesiętnego.

14.1.3 Kopiowanie ustawień kanałów

Urządzenie umożliwia kopiowanie ustawień przypisanych danemu kanałowi pomiarowemu i wklejanie ich do innego kanału. Pozwala to na znaczne przyspieszenie programowania w sytuacji, kiedy do zaprogramowania jest większa liczba kanałów, którym przypisane mają być takie same ustawienia. Po przeklejeniu ustawień należy jedynie zmienić adres wejścia pomiarowego oraz nazwę kanału (dla ułatwienia identyfikacji).

W celu skopiowania ustawień, z rozwijanej listy w górnej części okna **Kanały**, należy wybrać kanał, który ma być kopiowany, a następnie wcisnąć przycisk ^{Kopiuj}. Następnie należy wybrać kanał, do którego ustawienia maja być skopiowane (z rozwijanej listy w górnej części okna **Kanały**) i wcisnąć przycisk ^{Wklej}. Oba przyciski funkcyjne zlokalizowane są w dolnej części ekranu.

14.2 Print screen

W celu wykonania zrzutu ekranu należy nacisnąć przycisk serwisowy BTL znajdujący się z tyłu urządzenia. Podczas trwania operacji, ekran pozostanie nieaktywny przez kilka sekund, a proces sygnalizować będzie świecąca na niebiesko dioda, zlokalizowana na płycie czołowej urządzenia. Po zakończeniu zapisu na ekranie wyświetlony zostanie komunikat informacyjny, który należy potwierdzić.

Wewnętrzna pamięć urządzenia może przechowywać do 10 zrzutów ekranu, numerowanych cyframi od 0 do 9. W przypadku przekroczenia tej liczby numeracja ponownie rozpoczyna się od 0, a obrazy są nadpisywane. Wszystkie pliki zapisywane są w formacie *.bmp.

Chcąc skopiować utworzony obraz z wewnętrznej pamięci urządzenia na podłączoną pamięć zewnętrzną typu flash (klucz USB) należy z rozwijalnego paska menu wybrać przycisk es, a następnie ikonę

Rys. 14.3 Zapis zrzutów ekranu na kluczu USB.

Z plików znajdujących się w oknie po lewej stronie ekranu, w folderze **PRTSCR**, należy wybrać ten, który ma być skopiowany (folder znajduje się na dole listy). Po naciśnięciu, nazwa wybranego pliku zostanie zaznaczona na niebiesko. Następnie z menu po prawej stronie należy wybrać polecenie **Zapisz wybrany na USB.**

14.3 Serwer WWW

Serwer WWW umożliwia przeglądanie tabel użytkownika oraz pobranie plików archiwum z poziomu przeglądarki WWW.

Aby uruchomić serwer WWW należy w pasku adresu przeglądarki umieścić adres IP urządzenia – informacja dostępna w oknie <u>Informacje o urządzeniu</u>.

Konfiguracja Adresu IP możliwa jest w menu przyrządu, w oknie ustawień Komunikacja ($\overset{\bullet}{\longrightarrow} \rightarrow \overset{\bullet}{\longrightarrow} \rightarrow$ zakładka **Ethernet**).

Następnie należy wybrać język naciskając na odpowiedni piktogram flagi i zalogować się hasłem **Użytkownika.** W przypadku, gdy hasło to jest wyłączone strona automatycznie załaduje listę plików archiwum.

metrenic
Password
Login

Rys. 14.4 Okno logowania serwera WWW.

metrenic	Tabele Wyników Archiv	vum Wyloguj PL
DL2		
Tabele 1 Tabela 2		
Gas mass flow 0.000 kg/m ²	∑1: Gas mass flow 296157kg	∑2: Gas mass flow 296157 kg
Air volumetric flow 10.00 m ^s /h	∑1: Air volumetric flow 807624m ^a	∑2: Air volumetric flow 807624 m ³
Kanał 8 ∑1#1×@1#2 296157		
Kanał 9 ∑1#1+∑2#1 592315		

Rys. 14.5 Tabele użytkownika – serwer WWW.

Serwer WWW umożliwia podgląd danych pomiarowych umieszczonych w tabelach zbiorczych w urządzeniu. Tabela z wartościami procesowymi dostępna jest w zakładce *Tabele Wyników*. Należy wziąć pod uwagę, że strona nie jest odświeżana automatycznie. Aby odświeżyć dane należy wcisnąć przycisk **Odśwież dane** znajdujący się pod tabelą.

	metrenic	Tabele Wyników	Archiwum	Wyloguj	PL
D	L2				
	Nazwa	Rozmia	ır	Data	
	2AD30.csv	2025-02-06	09:49	0.26 kB	
	2AE30.csv	2025-02-06	13:24	0.58 kB	
	2AD31.csv	2025-02-06	13:24	0.26 kB	
	2AE31.csv	2025-02-06	13:29	0.39 kB	
	2AD32.csv	2025-02-06	13:29	0.27 kB	
	2AE32.csv	2025-02-06	13:32	0.27 kB	
	2AD33.csv	2025-02-06	13:32	0.27 kB	
	2AE33.csv	2025-02-07	11:39	0.25 kB	
	2AD34.csv	2025-02-07	11:39	0.27 kB	
	2AE34.csv	2025-02-11	10:59	4.66 kB	
	2AD35.csv	2025-02-11	10:59	0.27 kB	
	2AE35.csv	2025-02-11	11:06	0.36 kB	
	2AD36.csv	2025-02-11	11:07	0.28 kB	
	2AE36.csv	2025-02-11	11:08	0.22 kB	
	2AD37.csv	2025-02-11	11:08	0.28 kB	

Rys. 14.6 Lista plików archiwum– serwer WWW.

Lista plików archiwum dostępna jest w zakładce Archiwum. Pliki ściągane są na komputer poprzez kliknięcie w przypisaną danemu archiwum nazwę na liście plików

archiwum. Istnieje możliwość sortowania plików archiwum poprzez naciśnięcie na nazwę nagłówka kolumny w tabeli.

14.4 Programy dodatkowe

14.4.1 DL-Config

Program służy do modyfikacji parametrów urządzeń DL2, DL5, DL7. Ustawione parametry pomiędzy urządzeniem a programem przekazywane są przy pomocy plików w formacie *.par. Ilość możliwych kart (modułów) do zainstalowania – 2, program domyślnie dodaje kartę (moduł) w slocie M.

Rys. 14.7 Okno startowe programu DL Config i wybór urządzernia DL2.

14.4.2 M-Raport

Program służy do analizy i wizualizacji wyników pomiarowych. W zależności od typu archiwum, dane mogą być przedstawione w formie wykresu lub tabeli danych. W rozszerzonej wersji programu M-Raport istnieje możliwość pobrania plików archiwum z urządzenia za pomocą połączenia Ethernet.

Szczegółowe informacje znajdują się w instrukcji do programu M-Raport.

Rys. 14.8 Przykładowy wygląd okna w programie M-Raport, aktywacja, filtracja danych.

Rys. 14.9 Przykładowy wygląd okna w programie M-Raport, dane w formie tabeli i wykresu.

15 SYMBOLE AWARII

Sytuacje awaryjne związane z danym kanałem oznaczane są poprzez wyświetlanie odpowiedniego symbolu:

- ------ Kanał wyłączony, symbol wyświetlany w oknie trendów i tabeli zbiorczych, dla wyłączonych kanałów okno pojedynczego wyniku nie jest wyświetlane. Symbol jest wyświetlany dla wyłączonego wejścia, pustego slotu (niepodłączonego modułu) lub dla podłączonego modułu PSBATT w wersji 1.0 lub w wersji 1.1.
- --- Symbol kanału wyłączonego zapisywany w archiwum.
- ---W--- Czekaj, wartość nie jest gotowa, pojawia się w przypadku, gdy do kanału jest podłączone wejście, które jeszcze nie zostało skonfigurowane. Pojawia się głownie na początku pracy urządzenia.
- ---||--- Przerwa obwodu, dotyczy tylko modułów prądowych ustawionych w trybie 4-20mA.
- ---E--- Przekroczenie górnego zakresu pomiarowego dla karty wejść.
- ---R--- Przekroczenie zakresu pomiarowego dla czujnika.
- --ERR-- Błędna wartość pomiarowa, która pojawiała się z innej przyczyny niż opisane powyżej.

15.1 Symbole awarii dla modułu 1HRT

- ---W--- Czekaj, wartość nie jest gotowa, pojawia się przy uruchamianiu modułu oraz przy nawiązywaniu połączenia z czujnikiem.
- ---||--- Brak podłączonego czujnika (przerwa obwodu).
- ---E--- Błędna ramka HART (błędne CRC, błędna długość preambuły).
- --ERR-- Błędny status HART (pojawia się jeśli opcja *Status* jest włączona w oknie ustawień I/O dla wybranej zmiennej).

16 PROTOKÓŁ TRANSMISJI MODBUS RTU / MODBUS TCP

16.1 Informacje podstawowe

Wartości procesowe oraz liczniki są dostępne jako *holding registers* oraz *input registers*. Istnieje możliwość jedynie odczytu rejestrów.

16.1.1 Typy danych

uint/int	Reg (Bit 150)				
16bit	HByte	LByte			
TODIC	2.	1.			

uint/int/floot	Reg_L (E	Bit 150)	Reg_H (Bit 3116)		
uini/ini/iioat	HByte	LByte	HByte	LByte	
52011	2.	1.	4.	3.	

uint/int/float	Reg_H (B	it 3116)	Reg_L (Bit 150)		
32bit sw	HByte	LByte	HByte	LByte	
525H 3W	4.	3.	2.	1.	

int/double 64bit	Reg_L (Bit 150)		Reg_H (Bit 3116)		Reg_L (Bit 4732)		Reg_H (Bit 6348)	
	HByte	LByte	HByte	LByte	HByte	LByte	HByte	LByte
	2.	1.	4.	3.	6.	5.	8.	7.

16.2 Adresy rejestrów

Wartości procesowe (bieżące) dostępne są w formacie zmiennoprzecinkowym zgodnym ze standardem IEEE-754 dla 32 bitowej liczby typu zmiennoprzecinkowej pojedynczej precyzji (32-bit floating point single).

Liczniki dostępne są w formacie zmiennoprzecinkowym zgodnym ze standardem IEEE-754 dla 64-bitowej liczby typu zmiennoprzecinkowej podwójnej precyzji (64-bit floating point double).

16.2.1 Tabela adresów wartości procesowych

Numer kanału pomiarowego	Numer rejestru	Adres Modbus	Wielkość (w rejestrach)	
1	300000 / 400000	00	2 (32bit float)	
2	300002 / 400002	02	2 (32bit float)	
29	300056 / 400056	56	2 (32bit float)	
30	300058 / 400058	58	2 (32bit float)	

16.2.2 Tabela adresów licznika pierwszego

Numer kanału pomiarowego	Numer rejestru	Adres Modbus	Wielkość (w rejestrach)	
1	300060 / 400060	60	4 (64bit double)	
2	300064 / 400064	64	4 (64bit double)	
29	300172 / 400172	172	4 (64bit double)	
30	300176 / 400176	176	4 (64bit double)	

16.2.3 Tabela adresów licznika drugiego

Numer kanału pomiarowego	Numer rejestru	Adres Modbus	Wielkość (w rejestrach)	
1	300180 / 400180	180	4 (64bit double)	
2	300184 / 400184	184	4 (64bit double)	
29	300292 / 400292	292	4 (64bit double)	
30	300296 / 400296	296	4 (64bit double)	

16.2.4 Adresy stanów alarmów i potwierdzenia alarmów

Nr. kanału	AL1	AL2	Pot. AL1	Pot. AL2	AL1+Pot.	AL2+Pot.
	Digital Input	Digital Input	Digital Input	Digital Input	Intiger 16bit	Intiger 16bit
1	0	30	60	90	300	330
2	1	31	61	91	301	331
29	28	58	88	118	328	358
30	29	59	89	119	329	359

Stany alarmów i potwierdzenie alarmów są dostępne jako Discrete Inputs, Discrete Coils Wartość [0, 1]

Stan alarmów i potwierdzenie alarmów są dostępne jako suma logiczna Holding Registers, Input Registers. Zmienna Intiger 16 bitowa.

Wartość (suma logiczna stanu alarmu i stanu potwierdzenia)

0 - brak alarmu, brak potwierdzenia

1 - alarm aktywny, brak potwierdzenia

- 2 brak alarmu, alarm potwierdzony
- 3 alarm aktywny, alarm potwierdzony